
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS num. 2466

Rapid Microbe Detection Using Deep
Learning

Sara Bakić

Zagreb, June 2021.

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS num. 2466

Rapid Microbe Detection Using Deep
Learning

Sara Bakić

Zagreb, June 2021.

Umjesto ove stranice umetnite izvornik Vašeg rada.

Kako biste uklonili ovu stranicu, obrišite naredbu \izvornik.

iii

CONTENTS

1. Introduction 1

2. Dataset 4
2.1. File formats . 5

2.1.1. FASTA and FASTQ . 5

2.1.2. PAF . 6

2.2. Preprocessing . 6

2.2.1. Reference-sampled chunks . 7

2.2.2. Real reads . 8

2.2.3. Dimensionality reduction . 8

3. Methods 10
3.1. Overview . 10

3.1.1. Artificial Neural Networks . 11

3.1.2. Embedding Layer . 13

3.1.3. Attention . 15

3.1.4. Transformers . 17

3.2. Representation Models . 21

3.2.1. Triplet Network . 21

3.3. Detection from representations . 23

3.3.1. Parametric classification . 23

3.3.2. K-nearest neighbors . 24

3.4. Visualization . 26

3.5. Evaluation Metrics . 27

3.6. Technical Stack . 28

4. Experiments and Results 30
4.1. Training on reference-sampled chunks . 31

4.2. Training on a combination of reference-sampled chunks and real reads . . . 36

4.3. Extensions for longer reads . 40

iv

4.3.1. Training with longer input sequences 40

4.3.2. Averaging representation learning 40

4.3.3. Majority voting classification learning 43

4.4. Discussion . 44

5. Conclusion 45

Bibliography 47

v

1. Introduction

Bioinformatics is an interdisciplinary scientific field that develops acquisition, storage, anal-

ysis, and dissemination techniques to understand biological data. Biological datasets are,

in general, large and complex which is why the developed techniques have to be fast and

accurate. The term "biological data" usually refers to genes, DNA, RNA, or protein, and the

developed techniques can be particularly useful when comparing genetic material between

different organisms.

Microbes are microscopic organisms, which may exist as single cells, multiple cells, or

as a colony of cells. They are too small to be seen by the naked eye and live in almost

every habitat, the deserts, the ocean floor, geysers, high in the atmosphere, and deep in the

Earth showing they can adapt to living conditions varying from mild conditions to extremely

high or low temperatures, high pressure, and even high radiation environments. The most

common types of microbes are bacteria, viruses, and fungi.

Microbes are really important in everyday life for humans, as well. A healthy human is a

home to millions of microbes, also called microorganisms, making up the human microbiota,

including the essential gut flora. However, some microbes are pathogens responsible for

infectious diseases and are as such targets of hygiene measures. Microbes serve to ferment

foods (eg. beer or wine) and treat sewage and produce fuel, enzymes, and other bioactive

compounds.

By studying the genetic material of microbes, a deeper understanding of their biological

components and some insight into how their genetic configuration contributes to the charac-

teristics that distinguish one microbe species from another is gotten. Since the discovery of

microorganisms during the period 1665-1885, they have been the objective of many genetic

researches and applications, and were even used to study evolution. With the accelerating

development of sequencing techniques, new possibilities for microbial genetics were intro-

duced and microbial genetics has advanced tremendously.

Since the entire biological information is stored within DNA or RNA strand(s), what

bioinformaticians are interested in are the sequences of nucleotides in those strands. There

are four canonical DNA bases, thymine (T), adenine (A), cytosine (C), and guanine (G), and

the process of determining the physical order of those bases is called sequencing. Therefore,

1

the first step in every research is the collection of needed biological data through sequenc-

ing. While there are different sequencing approaches, the dominant sequencing strategy

nowadays is, so-called, Nanopore (”third-generation”, ”long-read”) DNA sequencing. The

Nanopore sequencing process can be separated into three main stages:

1. sample preparation - obtaining nucleotide specimen used in the experiment

2. signal collection - measuring electrical current signals using Nanopore sequencing

device, e.g. MinION

3. base calling - application of base caller to current signals from the previous stage

Sequences obtained through Nanopore sequencing are long and of high quality which is

essential for further research. A nanopore is a hole of nanometer size set in an electrically-

resistant polymer membrane through which DNA strands are being driven by electrophore-

sis. As the strand is being driven through the nanopore, different magnitudes of the electric

current density across a nanopore surface are generated depending on the nanopore’s dimen-

sions and the composition of DNA or RNA that is occupying the nanopore. These current

signals are then converted to a sequence of bases through a procedure called base calling.

Although third-generation sequencing approaches yield high-quality data, there are still er-

rors in sequences due to DNA strands moving fast making the signals prone to background

noise and base calling errors.

For the fast microbe detection problem, both current signals and base called data could

be used. However, this work focuses on the ability to learn representations and distinctions

between different microbic organisms based on base called data. Working with such data

remains one of the most challenging problems in artificial intelligence due to high complexity

of biological data. Additionally, since sequencing errors add noise to the data, it is obvious

why this problem can be considered extremely hard.

The goal of this work is to research possibilities of deep learning methods for creating a

compressed vector representation for a sequence representing a DNA fragment of a microbe.

This representation should encapsulate features that distinguish fragments of one microbe

from fragments belonging to other species. Finally, having the representations that in a

manner cluster fragments belonging to the same microbe, a system for detecting the microbe

based on a representation of a fragment of that microbe is developed.

The approach to the microbe detection problem presented in this work will be inspired

by novel deep learning architectures which are mostly used for natural language processing

tasks (NLP). These architectures are based on an "attention" mechanism and achieve state-

of-the-art results on a variety of NLP problems.

In this thesis, chapter 2 gives an introduction to the dataset used for training and eval-

uation of the microbe detection process. Chapter 2 also provides details on preprocessing

2

flow. Chapter 3 will give a theoretical overview of general methods and underlying details of

architecture used in this work. Then, specificities on the exact models used for microbe de-

tection task are presented alongside visualization and evaluation methods that will be used.

Chapter 3 is completed with a brief description of the technical stack. Chapter 4 presents all

of the experiments done and their results and discusses them. Finally, a conclusion is done

in chapter 5.

3

2. Dataset

The entire dataset originated from the Zymo mock community 1, a publicly available database

(Nicholls et al. ((2019))). The ZymoBIOMICS Microbial Community Standard is the first

commercially available standard for studies in metagenomics and microbiomics. Mock com-

munity standards can be useful for the development and validation of not only laboratory but

also bioinformatics methods as well. This database consists of ten microorganisms, eight

equally distributed bacteria (each holding 12% of the data): Bacillus subtilis, Enterococcus

faecalis, Escherichia coli, Lactobacillus fermentum, Listeria monocytogenes, Pseudomonas

aeruginosa, Salmonella enterica, and Staphylococcus aureus and two yeasts (each holding

2% of the data): Cryptococcus neoformans and Saccharomyces cerevisiae.

The entire dataset consists of:

– 4.23 M reads

– 16.59 Gb bases

– 4,620bp read length N50

Besides short reads representing DNA fragments, as a means to perform the experiments

in this research, the entire genomes were needed. In our research, data from seven out of ten

microbes included in the Zymo mock community was used. Full lengths of the references

used in this research are shown in Table 2.1.

Table 2.1: Original Genome Lengths

Species Length (bp)

Bacillus subtilis (bs) 4,045,677

Enterococcus faecalis (ef) 2,845,392

Escherichia coli (ec) 4,875,441

Listeria monocytogenes (lm) 2,992,342

Pseudomonas aeruginosa (pa) 6,792,330

Salmonella enterica (se) 4,809,318

Staphylococcus aureus (sa) 2,730,326

1https://github.com/LomanLab/mockcommunity

4

msikic
Sticky Note
too many brackets :)

Genomes are very long, complex, and very similar to each other which makes the distinc-

tion between different species even harder. The closer organisms are in a phylogenetic tree,

the higher is the similarity between genomes. The similarity between two genomes can be

calculated using the Average Nucleotide Identity (ANI). ANI is a measure of nucleotide-level

genomic similarity between the coding regions of two genomes. First, bidirectional best hits

(BBHs) between a genome pair are computed as pairwise bidirectional best nSimScan hits

of genes having 70% or more identity and at least 70% coverage of the shorter gene. ANI is

then computed using the following formula:

ANI =
∑

bbh Percent identity * Alignment length
Lengths of BBH genes

(2.1)

Having an ANI score of ≥ 95% is, usually, a boundary for same species genomes. The

ANI scores for genomes in Table 2.1 are calculated using ORTHOAni 2 (Lee et al. ((2016)))

algorithm and are shown in Table 2.2. The notation in the table is following the abbreviations

listed in Table 2.1.

Table 2.2: ANI scores

ef 67.27%

ec 64.17% 64.52%

lm 67.70% 70.47% 65.09%

pa 64.98% 71.68% 68.02% 68.91%

se 63.06% 64.62% 80.75% 64.32% 68.33%

sa 67.21% 67.68% 64.55% 67.33% 72.49% 65.65%

bs ef ec lm pa se

As it can be seen, ANI scores are mostly in the range between 65% and 70% which

is relatively high. The biggest outlier is the ANI score between Salmonella enterica and

Escherichia coli which implies it might be the most difficult to distinguish those two species.

2.1. File formats

2.1.1. FASTA and FASTQ

The most common formats biological data is stored in, are FASTA and FASTQ. Both of these

formats contain textual representation of a sequence of nucleotides where each nucleotide is

represented by one representation letter. The most common letters are reserved for five

canonical nucleobases:
2https://www.ezbiocloud.net/tools/orthoani

5

– A: adenine

– C: cytosine

– G: guanine

– T: thymine

– U: uracil

Apart from primary bases, there are letters for parts of the sequence that are noisy and cannot

be uniquely determined (eg. M - adenine or guanine, N - any of the five canonical bases, etc.).

Each entry in FASTA format consists of two lines. The first line begins with the symbol

">" followed by a sequence identifier. The second line is the sequence itself.

An example of an entry in FASTA format:

>a019fb87-85b7-495a-b6dc-789a2f8c4572_Basecall_2D_000_2d

TACGCATAAGCGCCAAAAGCACAAGATGCTCACCGCCAG...

Each entry in FASTQ format consists of four lines. The first line begins with the symbol

"@" followed by a sequence identifier. The second line is the sequence itself. The third line

begins with the symbol "+" which is optionally followed by the sequence identifier and the

fourth line contains information on the quality of the sequence.

An example of an entry in FASTQ format:

@cluster_2:UMI_ATTCCG

TTTCCGGGGCACATAATCTTCAGCCGGGCGC...

+

9C;=;=<9@4868>9:67AA<9>65<=>591

2.1.2. PAF

PAF is a text format describing approximate mapping positions between two sets of se-

quences. It contains this TAB-delimited information in each line:

2.2. Preprocessing

For this research, fragments of DNA are needed. Since sequenced reads are usually noisier

and with errors, this work exploits approaches combining both fragments sampled from the

references and the real reads. While some of the preprocessing is common for both types

of fragments, a few preprocessing steps are separated and will, therefore, be separately de-

scribed.

6

msikic
Sticky Note
looks unfinished

Table 2.3: PAF format

Column Type Description

1 string Query sequence name

2 int Query sequence length

3 int Query start (0-based; BED-like; closed)

4 int Query end (0-base; BED-like; open)

5 char Relative strand: "+" or "-"

6 string Target sequence name

7 int Target sequence length

8 int Target start on the original strand (0-based)

9 int Target end on the original strand (0-based)

10 int Number of residue matches

11 int Alignment block length

12 int Mapping quality (0-255; 255 for missing)

2.2.1. Reference-sampled chunks

For each of the reference genomes, an approximately equal number of chunks was sampled.

The sampling algorithm went as follows:

1. choose the reference genome from which a chunk will be sampled

2. if the chosen genome consists of more than one contig, choose a conting to sample

from (the probability of choosing a certain contig was proportionate to its length)

3. having a contig, randomly choose starting position and sample a chunk of a predefined

length (all chunks are of the same length)

The length of the sampled chunks was determined based on the configuration of the

representation network, the length of the sequence that is expected as the input to the network

to be specific, but more on this later.

Apart from the sampled sequence, some additional information was memorized for each

sampled chunk:

1. the starting position of the chunk on the reference

2. contig from which the sample originates

3. microbe to which the sample belongs

4. length of the sample

This information was later used for representation learning.

7

2.2.2. Real reads

The reads obtained in the sequencing process are already in a short DNA fragment format.

However, there are some additional steps needed to be done to use these reads in the repre-

sentation learning in the same manner as reference sampled chunks were used. All of the

information that was memorized for the sampled chunks is needed for the real reads as well.

While the information on contig and microbe the read originates from is available in the

FASTQ file along with the sequence, reads were needed to be aligned against the reference

to find to which part of the genome the read belongs to and memorize starting position of the

mapping.

This information is obtained through the process called alignment. One of the most

commonly used aligner is minimap2 3 (Li ((2018))) which aligns a set of shorter reads to a

reference genome and writes the alignment in the aforementioned PAF format. The informa-

tion stored in PAF format is then used to extract the relative starting position of the read and

store it for future purposes.

Now that both reference-sampled dataset and dataset of real reads share the same set of

features, both datasets can be preprocessed equally.

2.2.3. Dimensionality reduction

The length of reads obtained through the third-generation sequencing process can vary from

less than a thousand to more than ten thousand bases. Long sequences can be problematic

for deep models because they usually poorly handle long codependency. The usual length

of sequences forwarded to state-of-the-art deep architectures does not exceed few hundreds

or a thousand input points which is significantly shorter compared to sequences having few

thousand bases. To reduce the dimensionality of sequences, the input samples were split

into fragments of k consecutive bases, so-called k-mers. Splitting the input samples that way

reduced the length of the input samples by the factor of k which means the original sample

containing s ∗ k bases would now have the maximum acceptable sequence length given that

the maximum sequence length is set to s and the original sequence is split into fragments of k

consecutive bases. To understand this result better, a parallel to natural language processing

can be drawn. The sequence obtained through dimensionality reduction is equivalent to a

sentence while each k-mer in the sequence is equivalent to a word in the sentence and each

word represents a point in a sentence.

To justify slicing the original sequences into smaller fragments which would then rep-

resent one input point in a new sequence, some analysis of lengths occurring in the Zymo

mock community database was done.

3https://github.com/lh3/minimap2

8

(a) Histogram of all lengths (b) Histogram of lengths with 10% outliers removes

Figure 2.1: Histograms of read lengths

Figure 2.1 shows histograms of lengths of reads present in the Zymo mock community

database. In subfigure 2.1a all lengths all length can be seen and in subfigure 2.1b, 10% of

outliers are removed. Additionally, the median of lengths = 3732 is labeled.

Some additional analysis regarding the lengths of the reads was to determine a feasible

combination of k and s. The analysis is done on a grid of options for a set of values and

results are shown in Table 2.4.

Table 2.4: Percentage of reads having length ≤ k*s

@
@
@
@

k

s
128 256 512 1024

5 0.69% 5.42% 28.09% 69.95%
7 2.17% 13.53% 47.40% 85.49%
9 4.04% 23.13% 63.58% 91.86%
11 7.13% 33.05% 75.18% 95.00%

Table 2.4 shows that the choice of k and s can have a significant effect on the portion of

reads that "fit" into the network. If the threshold is set to 50%, only six combinations (bold

in the table) pass that threshold. Four of those combinations include having sequence length

set to 1024 input points which is quite long. The other two feasible combinations combine

sequence length of 512 and k set to either 9 or 11. Although setting k=11 covers a larger

portion of reads, setting k to large value results in having a vast vocabulary of k-mers. More

on vocabulary, its purpose, and the effect of the value of k on the size of vocabulary later.

Nevertheless, for all these reasons, most of the experiments presented in this work will be

performed with k=9 and s=512.

9

3. Methods

3.1. Overview

The main objective of this work is to research, develop and evaluate deep learning architec-

ture that could generate a compressed representation of sequenced data. The representation

should be such that representations belonging to different microbes could be segregated and

the species a read originates from, could be assigned to that read based on its compressed

representation with high accuracy. The overview of the work pipeline is shown in Figure 3.1.

Figure 3.1: Scheme of work pipeline. The initial sequence goes through the afore-explained pre-

processing. The model learns compressed sequence representation, which is visualized and classified

into microbial species.

10

The overview of artificial neural networks is introduced in section 3.1.1. After the pre-

processing steps described in section 2.2, textual representations of the k-mers need to be

converted to number representations. The process of transferring textual representations of

k-mers to real-valued vectors, as well as justification for such transformation, is described in

section 3.1.2. Having real-valued representations, the sequences are ready to be forwarded

to neural network input. Architecture components of deep neural networks being used for

microbe detection problem are explained in detail in sections 3.1.3 and 3.1.4. How these

architecture components are combined into a representation network is explained in section

3.2 while the process of detecting microbial species from read-level representations is ex-

plained in section 3.3. Finally, visualization and evaluation methods, as well as technical

stack details are introduced in sections 3.4, 3.5, and 3.6.

3.1.1. Artificial Neural Networks

Artificial neural networks (ANNs) are one of the fundamental pieces of machine learning.

They are inspired by biology and designed to simulate the way the human brain processes and

analyzes information. The architecture of ANNs can be decomposed into layers. There are

three fundamental types of layers present in (each) neural network: an input layer, hidden

layers (one or more), and an output layer. Each layer is built of units called neurons. A

neuron is a node in the network simulating a neuron in the human brain. It receives one or

more inputs and sums them to produce an output. Usually, each input is separately weighted

and the output sum is passed through a non-linear function known as the activation function.

Many non-linear functions could be used as the activation function but the few most common

are: sigmoid, ReLU, tanh, and several variants of those (Sharma and Sharma ((2017))). The

connections between nodes are called edges and they imply the output of which node is

forwarded to an input of which other node. The edges simulate synapses in the brain.

An overview of a three-layer neural network with a two-dimensional input layer, three-

dimensional single hidden layer, and a two-dimensional output layer is illustrated in Figure

3.2. Figure 3.2 also demonstrates the functionality of a neuron with a k-dimensional input.

As the Figureshows, a neuron has a weight vector w = (w1w2, ..., wk) which is used to find

a weighted sum of k input values. The weighted sum is then passed through an activation

function and the final output is forwarded to other neurons as one of their input values.

ANNs can learn non-linear functions which is why they are called universal functional

approximators. The process of learning consists of two alternating steps called the forward

pass and backward pass - backpropagation. Artificial neural networks are built for a specific

task and the forward pass is the process of obtaining a result that can be interpreted and

evaluated for the predefined task from the inputs by forwarding them through the network.

Backpropagation is a general optimization method for performing automatic differentiation

11

Figure 3.2: Scheme of an ANN with a closer look at a neuron structure

of complex nested functions. The result of the forward pass is evaluated by calculating a

predetermined loss function. By computing the gradient of that loss function with respect

to the neural network’s weights values for weight updating are determined. The gradient is

calculated using the chain rule, calculating layer by layer where the gradient of the final layer

is being calculated first and the calculation proceeds backward through the network until the

gradient of the first layer is calculated.

Deep neural networks (those with more than one hidden layer) often encounter problems

with the backpropagation optimization method. These problems are vanishing and exploding

gradients. When applying the chain rule in the backpropagation algorithm, the gradients of

layers closer to output are passed to gradient calculations of the layers preceding them in the

network.

Sometimes, the gradient can have a rather small value - it is common for many activation

functions to have a gradient ∈ (0, 1). Calculating the gradient with respect to front layer

weights in an N-layer network effectively results in multiplying small numbers N times. This

results in the front layer gradient being a very small value (almost 0) which is the so-called

vanishing gradient problem.

On the other hand, if the activation function gradient is relatively big, it can accumulate

12

to enormous value through the backpropagation algorithm. This is the so-called exploding

gradient problem and it brings the network into an unstable state.

(a) Effect of multiple sigmoid activations (b) Effect of multiple ReLU activations

Figure 3.3: Vanishing and exploding gradient

Figure 3.3 illustrates problems of vanishing and exploding gradient. Subfigure 3.3a

shows how applying the sigmoid function multiple times results in having a flattened func-

tion, which is equivalent to a vanishing gradient. On the other hand, applying a ReLU func-

tion with weight=2 multiple times results in a very steep function with a possible exploding

gradient.

3.1.2. Embedding Layer

Textual representation of a k-mer needs to be converted to a real-valued vector which encodes

the meaning of that k-mer. This step is important since deep networks expect the input to be

in a number format but also, having a real-valued representation of k-mers allows making a

comparison between different k-mers, to calculate their proximity, and to create embeddings

such that similar k-mers have a similar vector representation.

The first step in obtaining real-valued vector representations of the k-mers is building a

vocabulary of the k-mers. A vocabulary is a structure in which each k-mer is assigned an

index. This index is related to another structure called the embedding matrix. The embedding

matrix contains the actual real-valued vector representations of the k-mers. Therefore, when

a k-mer is forwarded as the input, the index of that k-mer is extracted from the vocabulary

and its embedding vector is found in the embedding matrix based on its vocabulary index.

The quality of the k-mer embeddings and further analysis depend on two embedding-related

hyperparameters, the size of the vocabulary and the dimension of the representation vector.

Assuming four canonical bases are occurring in the samples (A, C, T, G) the maximum size

of vocabulary is approximately 4k since there are four potential values at each position in

13

the k-mer and there are k of those positions. For k=9, the size of vocabulary would be

262,144 which is acceptable. On the contrary, if k would be set to 10, the vocabulary would

contain 1,048,576 inputs which is significantly bigger and more memory demanding. This

difference reflects even more when observing the effect it has on the embedding matrix.

The dimensions of the embedding matrix are defined by the size of the vocabulary and the

dimension of the representation vector. Having the size of vocabulary V and the dimension

of the representation vector d, the shape of the embedding matrix is V × d. Having d set to

a value that is too small lacks the capacity while setting d to a value that is too big results in

representations having poor quality.

Since data obtained through the sequencing process has some errors which are encoded

with letters other than A, C, T, G, if a k-mer containing one of those letters comes as input,

the current vocabulary-embedding matrix system does not have a way to handle such k-mer.

For these and some other reasons, the usual approach is to have some special tokens in the

vocabulary and the representation vectors associated with those tokens. Two most common

special tokens are <unk> and <pad> token. The <unk> token is used when a k-mer not

present in the vocabulary is presented as the input. That k-mer is then replaced by the <unk>

token and represented through a vector representation of the <unk> token.

As Figure 2.1 shows, read lengths can vary from a few hundred to few tens of thousands

of bases. When creating a real-valued vector representation for a sequence of k-mers, each

k-mer is embedded with a vector of a predefined length. While each k-mer is now repre-

sented with a vector of the same dimensionality, the dimensionality of the sequence remains

different. Artificial neural networks usually expect the input to have invariable dimensions

and this constraint does not hold for reads with varying lengths. This problem is solved by

defining the expected dimensionality of the input when constructing the neural network and

doing some additional preprocessing for those reads that have a length different from the

predefined expected sequence length. While several different approaches can be taken, the

two most common are trimming and padding. Trimming refers to reads that are longer than

the predefined maximum sequence length. Trimming means, as the name itself implies, that

reads that are too long for the model should be trimmed to predefined length and the residue

of the sequence should be discarded. Padding refers to reads that are shorter than predefined

length. This approach exploits the aforementioned <pad> token. When the input sequence is

shorter than the predefined length, it is artificially augmented to that length by adding <pad>

token at the end until the target length is achieved. <pad> token usually consists of zeros

which is why this approach is often referred to as zero-padding.

The embedding pipeline is shown in Figure 3.4. Chunking the initial sequence into k-

mers is followed by finding their index in the vocabulary and extracting their representation

vector from the embedding matrix based on the vocabulary index. The k-mer embedding

14

Figure 3.4: Dimensionality reduction and embedding process

vectors are then stacked to form an input sequence that is forwarded to the network. It

should be mentioned that representation vectors in the embedding matrix are initially set to

random values but are being optimized through backpropagation, like any other parameters

in the network.

3.1.3. Attention

For many years, the dominant strategy in sequence modeling included two types of neural ar-

chitectures, convolutional and recurrent neural networks. These architectures often encoun-

tered problems with the aforementioned vanishing and exploding gradients due to long-term

temporal dependencies. These problems imposed some length-related and other constraints

to recurrent and convolutional models for sequence modeling which resulted in poor results

across different sequence modeling tasks.

The biggest change in sequence modeling came in 2017 with "Attention Is All You Need"

(Vaswani et al. ((2017))) paper where authors proposed a novel network architecture, the

Transformer, based on a mechanism called attention where they focused on a variant of

attention mechanism called self-attention.

The attention mechanism consists of three basic concepts: query, keys, and values, all

real-valued vectors. The attention function maps a query and a set of key-value pairs to an

output vector. The output vector is computed as a weighted sum of values where each weight

in the sum is calculated as the compatibility score between the query and the corresponding

key. In the self-attention setting all three vectors, query, key, and value, are created from

the same original vector which corresponds to the aforementioned k-mer embedding (for

15

msikic
Sticky Note
Why not using sliding window too ?

natural language processing words are being embedded to real-valued vectors). Query-,

key- and value-vectors are created by multiplying embeddings by three separated matrices:

W q for queries, W k for keys, and W v for values. These matrices usually have a smaller

target dimension (compared to embedding dimension) therefore creating query, key, and

value vectors that are smaller than corresponding original embeddings and the weights of

matrices are being optimized in the learning process (through backpropagation). Having

query, key, and value vectors determined from the embeddings, it can be proceeded with

the attention mechanism. There are a few variants of attention functions, such as Bahdanau

(additive) (Bahdanau et al. ((2016))), or dot-product attention (Luong et al. ((2015))), but the

most commonly used nowadays (and presented in the "Attention Is All You Need" paper) is

so-called scaled dot-product attention.

The input consists of three aforementioned types of vectors, queries and keys of dimen-

sion dk and values of dimension dv which means the dimensions of the projection matrices

W q, W k and W v are dmodel × dk, dmodel × dk, and dmodel × dv, in that order, where dmodel is

the target dimension. Attention function is in practice computed on a set of queries simulta-

neously. The queries are packed into a matrix Q as well as keys and values into matrices K

and V. The matrix of outputs for input queries is computed as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (3.1)

As equation 3.1 shows, scaled dot-product attention consists of computing the dot-product

of the query with all keys, dividing it by
√
dk, and applying softmax to obtain the compat-

ibility scores between queries and keys which are then used as weights for calculating the

output. Applying softmax to the dot-product output essentially means keeping values that

should be focused on intact, and drowning out those values that are irrelevant. Dividing

the dot-product by
√
dk is an important step, especially for large dk.

√
dk corresponds to

the standard deviation of that dot-product, therefore, dividing the result by
√
dk essentially

means normalizing the dot-product result. For values relatively far from zero, softmax func-

tion is in regions with extremely small gradients (this is also visible in Figure 3.3a) and by

normalizing the dot product, value is pushed into a region close to zero to counteract that

effect.

The attention mechanism is based on calculating compatibility score and consequentially

focusing on certain position(s). The attention performance can be improved by a simple ex-

tension to the above-explained attention mechanism - multi-head attention. Multi-head at-

tention is essentially the same as the self-attention mechanism explained above only repeated

h times with different W q, W k, W v matrices. This extension to the original self-attention

mechanism expands the model’s ability to focus on different positions. This is important

since, in a single self-attention setting, weights could easily be dominated by the actual k-

16

mer itself and not other k-mers in the sequence. Additionally, since each attention head has

independent query/key/value matrices by which the initial embeddings are projected into

query/key/value representations, the attention layer is augmented with multiple representa-

tion subspaces. The final output of multi-head attention is calculated as follows:

MultiHead(Q,K, V) = concatenate(head1, head2, ..., headh)W
o (3.2)

where headi = Attention(QW q
i , KW

k
i , V W

v
i) (3.3)

The dimensions of W q
i ,W

k
i ,W

v
i remain the same as in single-head attention and W o ∈

Rhdv×dmodel .

Figure 3.5: Overview of scaled dot-product (left) and multi-head attention mechanisms (right)

The overview of the scaled dot-product attention mechanism (left) and multi-head atten-

tion (right) is illustrated in Figure 3.5.

Knowing the basic mechanisms behind the attention, more about a deep learning archi-

tecture called transformers which is based on attention mechanism can now be learned.

3.1.4. Transformers

The transformer network was originally designed for sequence transduction problems and

therefore consists of an encoding and a decoding component. The input to the encoder would

17

be the original sequence and the output of the encoder would be forwarded to the decoder

component which would use knowledge extracted from the input sequence in the encoder to

compute the output sequence. This section provides a detailed overview of the transformer

architecture and how this architecture incorporates attention mechanism and performs dif-

ferent sequence modeling tasks.

The encoding component of the transformer network is essentially a stack of encoder

layers that are identical in structure. An encoder layer consists of two components: a self-

attention layer followed by a feed-forward network. When the self-attention layer outputs

the weighted value vectors as it is explained above, the same feed-forward network is applied

to each position in the sequence independently and the final output of the encoder layer is

created. The output of the preceding encoder layer is then forwarded to the input of the

following encoder layer and the initial input for the first encoder layer consists of the initial

embedding vectors.

The decoder component has a structure similar to the encoder component. It is essentially

a stack of decoder layers (the same number as the encoder) that have an architecture similar to

encoder layers but with an additional component. Three components of the decoder layer are

the self-attention layer, encoder-decoder attention layer, and feed-forward neural network.

The encoder-decoder attention layer helps the decoder to focus on relevant parts of the input

sentence by performing multi-head attention over the output of the encoder. The other two

components of the decoder layer have the same role as they do in the encoder component.

Figure 3.6: Illustration of the encoder and decoder layer

The architecture of the encoder and decoder layer is illustrated in Figure 3.6.

The transformer network does not include any recurrent nor convolutional components.

All of the inputs are simultaneously forwarded to the network. That approach provides no

information on the order of inputs in the sequence. This information is really important for

sequential data, especially biological data, since the ordering of the nucleotides (or k-mers)

18

defines the functionality of the genome fragment. To solve this problem, information on the

relative ordering in the sequence is injected through a mechanism called positional encoding.

Positional encoding

Positional encoding essentially consists of adding a vector to each of the input embedding

vectors to enrich the embeddings with the information on the relative position of the token

in sequence. Positional encoding vectors follow a certain pattern that can be fixed or learned

by the model. Commonly used positional encoding approach includes forming the positional

encoding vector from two periodic functions, sin, and cos:

PE(pos, 2i) = sin
(pos

100002i/dmodel

)
(3.4)

PE(pos, 2i+ 1) = cos
(pos

100002i/dmodel

)
(3.5)

where dmodel is the dimension of the embeddings and i is the position.

Knowing all of the specificities of the transformer network, the overall architecture of the

network can be further inspected. As it was mentioned earlier, the transformer network is

originally built as a two-part network with an encoder for knowledge extraction and a decoder

for output sequence creation. However, the microbe detection task is not a sequence-to-

sequence problem and there is no need (nor the possibility) for creating an output sequence.

The transformer network built for this task should only extract knowledge from the input

sequence and create a sequence representation. This is done by using only the encoding

component of the transformer network.

Transformer-based model with the architecture for the microbe detection task is illus-

trated in Figure 3.7. This model has the underlying architecture of the transformer model

described above. A sequence of the aforementioned k-mer embeddings is presented as the

input, information on the relative positions of k-mers in the sequence is injected by positional

encoding and position-corrected embedding vectors are then forwarded to the transformer

network. The transformer component is built out of N encoder layers. Each encoder layer

has the two-component structure explained above. The figure, however, shows the pres-

ence of a residual connection around each sublayer in the encoder layer followed by layer

normalization. The output of each sublayer in the encoder layer can be formulated as:

SublayerOutput(x) = LayerNorm(x + SublayerFunc(x)) (3.6)

The output of the final encoder layer is essentially a list of vectors where the length of the

list is determined by the length of the input sequence and each vector represents an updated

real-valued vector representation of each k-mer in the input sequence. These vectors are

often referred to as dynamic embeddings (while the initial embedding is referred to as static

19

Figure 3.7: Transformer model for sequence representation

embeddings). However, this does not complete the representation task, since the final goal

is to have a single vector that would be the representation of the entire sequence. There are

several approaches for obtaining the sequence-level representation from a list of token-level

representations. One approach would be to concatenate all of the token-level vector rep-

resentations and create a sequence-level representation. This approach has one significant

disadvantage and that is the high dimensionality of the sequence representation. The next

approach was used for sequence classification tasks for a long time. The idea was to intro-

duce an additional special token and add it at the beginning of the input sequence. This token

would be initialized from the embedding matrix like the other tokens and it would participate

20

in the encoding process. Once the output of the encoder is obtained, the vector representation

corresponding to the special token would be used as a sequence representation and the rest

of the output would be discarded. The main disadvantage of this approach was that it solely

relied on artificially added token and the rest of the output was simply discarded. Therefore,

a rather simple yet efficient approach to creation of sequence representation from token-level

embeddings would be to mean average all of the token-level embeddings into a single vector

of the same dimensionality. That vector would then be the sequence representation which is

the chosen approach for this work and is illustrated in Figure 3.7.

By performing mean averaging of encoder output, the final sequence representation is

obtained. How is the goodness of a sequence representation evaluated, and how is such

network trained will be explained in detail in the following section.

3.2. Representation Models

As was already mentioned, the main goal of this work is to develop a mechanism that cre-

ates compressed representations of sequenced data such that reads originating from the same

species are more similar than those of reads originating from different species. An unsuper-

vised approach to this problem is the triplet concept which will be explained in the following

subsection.

3.2.1. Triplet Network

A triplet network (Hoffer and Ailon ((2018))) is a neural network of an arbitrary architec-

ture (convolutional, recurrent, transformer, ...). The defining feature of a triplet network is

the training mechanism. The triplet network training is an unsupervised feature learning

approach utilizing triplets (x, x+, x−) such that:

– x is an arbitrary sample called anchor

– x+ is a positive sample semantically similar to anchor

– x− is a negative sample semantically dissimilar to anchor

Triplets are forwarded through the network and their representations are obtained. Hav-

ing their representations, the network is trained by optimizing so-called triplet loss defined

as:

L = max (d(f(x), f(x+))− d(f(x), f(x−)) +margin, 0) (3.7)

The formula in equation 3.7 shows how the triplet loss is calculated for anchor x, posi-

tive sample x+, and negative sample x−. First, they are forwarded through the network to

obtain their representations: f(x), f(x+), andf(x−). Having the representations, distances

21

d between the anchor and positive sample, and anchor and negative sample are calculated.

The distance between representations can be defined as any distance measure suitable for

real-valued vectors but most commonly used is the L-norm distance measure. There are

many L-norm distances but one of the most commonly used is L2-norm distance - Euclidean

distance which is, for n-dimensional data, calculated as equation 3.8 states and was used for

this purpose.

d(a, b) =

√√√√ n∑
i=0

(ai − bi)2 (3.8)

To have similar representations for what are considered to be similar reads - anchor

and positive sample, and dissimilar representations for what are considered to be dissimi-

lar reads - anchor and negative sample, the distance between the anchor and positive sample

representation should be as close to zero as possible and the distance between the anchor

and negative sample should be as large as possible. If the expression d(f(x), f(x+))

has a value close to zero and expression d(f(x), f(x−)) has a large value, then the dif-

ference between those two expressions is negative. However, since loss cannot be nega-

tive and a positive learning outcome usually means the loss is equal to 0, the maximum

value between the difference of distances and 0 is taken. There is an additional element

in the triplet loss formulation called margin. Margin is a positive real-valued number to

push the difference between anchor-positive and anchor-negative distances to larger values.

This addition pushes the original distance constraint, d(f(x), f(x+)) ≤ d(f(x), f(x−)), to

d(f(x), f(x+)) ≤ d(f(x), f(x−))−margin where margin > 0 in order to have L = 0.

Figure 3.8: Illustration of triplet learning effect

The effect of triplet learning on distances between similar and dissimilar samples is

shown in Figure 3.8.

Choice of a positive and a negative sample for the sampled anchor depends on the prob-

lem that is being modelled through the triplet network. For this work, potential positive

samples for a sampled anchor are those reads that belong to the same microbe as the anchor.

Since some additional information on reads was extracted, the list of potential positive sam-

ples can be narrowed down to reads that share more than species with the anchor. As section

22

2.2 explains, alongside the sequence itself, the specific contig the read originates from, and

the relative starting position on the reference are memorized for each read. Therefore, a read

is a candidate for being a positive sample for a chosen anchor if it originates from the same

contig and its starting position on the reference is relatively close to the starting position

of the anchor. Additional information for narrowing the list of negative candidates can be

utilized as well. A read is a candidate for the negative sample if it does not originate from a

different species does not belong to a similar region of the microbe which is determined by

taking the relative starting position on the reference into account for these purposes as well.

3.3. Detection from representations

After creating compressed representations from the input sequences such that reads from the

same microbe and belonging to the same region of the reference have similar representations

and those belonging to different species have rather dissimilar representations, a mechanism

of deciding from which microbe the read originates based on its representation has to be

developed. Two approaches can be taken for the final microbe detection, one being a para-

metric classification approach and the other being a non-parametric classification approach

such as k-nearest neighbors. Details on these approaches, their advantages, disadvantages,

and main differences, but also the possibility of cooperation between these two approaches

are presented in the following subsections.

3.3.1. Parametric classification

A parametric classification is an approach that requires some architecture extensions for

the afore-explained representation network. After obtaining a representation of the read,

the knowledge embedded in that representation is used to determine the microbe that read

belongs to. This is done by adding one or more artificial neural layers on top of the rep-

resentation network. These layers are usually referred to as classification head. The input

to the classification head is the representation vector and the outputs are probabilities of a

sample belonging to each of the predefined classes. Since this approach includes adding

some parameters to the network, some additional training is required for the model to be

able to accurately classify samples. The additional training can include only those layers

that belong to the classification head or the entire network. If the weights of the representa-

tion component remain fixed and only the classification head is being trained, the learning

algorithm is by using the entire network for the forward pass but backpropagate the gradient

only through the layers of the classification head. On the other hand, both the pretrained

representation component as well as the newly initialized classification head can be trained

23

together on the classification task. This approach is often referred to as fine-tuning and it

is a common practice in deep learning. Fine-tuning implies that the entire network partici-

pates in both forward and backward pass of the learning algorithm. Training a classification

network requires labels for provided samples. When it comes to microbe detection, each

sample should be assigned a label denoting to which microbe the sample belongs. Since the

output of the classification head denotes the probabilities of the input sample belonging to a

certain microbe, the number of possible microbe classes has to be defined before classifica-

tion learning. This imposes some constraints. Once the classification network is successfully

trained using a set of N microbial species, it can accurately classify any sample belonging

to one of the species that were a part of the training set. However, if a sample originating

from a completely new species occurs, this network still classifies that sample as one of the

N microbial species from the training set. To have the ability to classify samples from the

new microbial species, a set of samples from that microbe would be needed for training a

new network with N+1 target microbes. This is quite unfortunate since the number of target

microbes can increase repeatedly. However, it has been shown many times that fine-tuning a

pretrained representation network on a downstream task, such as classification, has benefits

not only for the final classification accuracy but also improves the representation results.

3.3.2. K-nearest neighbors

K-nearest neighbors (KNN) (Kramer ((2013))) is non-parametric classification method. This

implies there is no need for any architectural changes or extensions to the existing represen-

tation network. Having a set of sample representations alongside labels denoting microbe

classes of the samples, the K-nearest neighbors classifier can determine the class of any new

sample based on its representation vector. K-nearest neighbors algorithm is a part of a gen-

eral method known as instance-based where specific training instances are used to make pre-

dictions without having an actual model derived from data. Therefore, the training part of the

K-nearest neighbors is simply storing training data along with class labels of training sam-

ples. Having this information stored, new observation is assigned to the most frequent class

amongst K-nearest neighbors of the new observation. The success of K-nearest neighbors

classification depends on data points in the training set but also on a few hyperparameters.

The hyperparameters that can affect the prediction of the K-nearest neighbors classifier are

the number of nearest neighbors being observed - K, and the distance measure determining

which data points are the nearest to the new observation. While the aforementioned L2 norm

distance - Euclidean distance is common for continuous data, K is more of a problem-specific

parameter.

The effect of different values for hyperparameter K is shown in Figure 3.9. Setting K

to 5 results in new observation being classified as ’x’ while setting it to 11 results in new

24

Figure 3.9: Effect of different K on classification results

observation being classified as ’o’.

K-nearest neighbors classification method has the obvious advantage of requiring no ad-

ditional training nor architecture modifications. The classification process is quite straight-

forward and the information on number of nearest neighbors belonging to each of the pos-

sible classes is available. When a sample belonging to a new microbe appears, that can be

easily detected by looking at the distances between that sample and samples from known

microbes (if the representation network works as expected, this sample should be very dis-

tant from samples belonging to different species) and to include a new species in the KNN

method is simple and easy. Also, some additional constraints can be easily imposed. These

constraints can assure a higher level of certainty for classification. With the simplest KNN

approach and N possible classes a minimum fraction of neighbors belonging to the same

class for a sample to be classified as that class is 1
N

. Having a large number of classes ef-

fectively means that the class of observation is determined by relying on a relatively small

fraction of nearest samples. This can be changed by adding a more strict condition for the

classification, e.g. ≥ 50% of neighbors belonging to the same class. If the condition is not

met, the new observation can be classified as an outlier.

The main disadvantage of this approach is that it completely relies on a representation

network that is usually pretrained on some general task and it might not be fully adapted to

the classification task.

25

For all these reasons, a hybrid approach to classification could utilize some advantages of

parametric as well as non-parametric approach. The hybrid approach would include training

a classification network consisted of representation network and classification head on a

downstream classification task. However, once the training is done, the classification head is

removed and the updated representation network is used for the KNN classification approach.

This way, a fine-tuned representation network that is further adapted to the classification task

is obtained and can be used to classify new observations in a fast and simple manner while

retaining the possibility of easily detecting a sample that potentially does not belong to any

of the microbes present in the current training dataset. Of course, this approach does not

eliminate the need for a new fine-tuning session once a new microbial species is included in

the database but it shows advantages over both individual approaches.

3.4. Visualization

There are several methods for visualizing high-dimensional data in a low-dimensional space

(usually two- or three-dimensional space). T-distributed stochastic neighbor embedding (t-

SNE) (van der Maaten and Hinton ((2008))) method is chosen for visualizing representations

of reads. t-SNE is a statistical visualization method based on Stochastic Neighbor Embed-

ding. The entire method is built around the idea of modeling each high-dimensional point by

a two- or three-dimensional point in such a way that similar objects are modeled by nearby

points and dissimilar objects are modeled by distant points with high probability.

t-SNE consists of two stages. In the first part of the algorithm, a probability distribution

over pairs of original high-dimensional points is constructed in such a way that similar data

points are assigned high probability while dissimilar data points are assigned low probability.

This is done by computing two conditional probabilities for each pair of data points following

this formula:

pj|i =
exp(−‖xi − xj‖2/2σ2

i)∑
k 6=i exp(−‖xi − xk‖2/2σ2

i)
(3.9)

pi|i = 0 for each i=1,..,N where N is the number of data points in the dataset. pi|j is

calculated likewise and probability pij that is proportional to similarity between xi and xj is

defined as:

pij =
pj|i + pi|j

2N
(3.10)

Now, since t-SNE aims to learn a d-dimensional map that reflects calculated probabilities

pij , the second phase of the t-SNE algorithm is constructing a probability distribution over

pairs of points in a d-dimensional map in such a way that the Kullback-Leibler divergence

26

(KL divergence) between these two distributions is minimal. The probability distribution of

low-dimensional data is constructed following this approach:

qij =
(1 + ‖yi − yj‖2)−1∑

k

∑
l 6=k(1 + ‖yk − yl‖2)−1

(3.11)

where yi, i=1,...,N, are the same data points but in d-dimensional space.

Once the probability distribution between low-dimensional data pairs is calculated, the

difference between these two distributions is calculated using KL divergence:

KL(P ||Q) =
∑
i 6=j

pij log

(
pij
qij

)
(3.12)

By minimizing the KL divergence using gradient descent with respect to yi the final dis-

tribution of points in low-dimensional space is determined. The quality of t-SNE clustering

depends heavily on algorithm parametrization and can be misleading but it is simply used as

a visualization aid - other forms of evaluation are calculated using the original representa-

tions.

3.5. Evaluation Metrics

Evaluation metrics provide feedback on how well does a model perform on a target task.

There are several standard evaluation metrics for classification problem: accuracy, recall,

precision, and F1 score (M and M.N ((2015))). All of the mentioned metrics are closely

related to a specific table layout that allows a straightforward visualization of model perfor-

mance called confusion matrix. A confusion matrix is a square matrix with the number of

rows and columns determined by the number of target classes of the classification model.

Each row in the confusion matrix represents instances of the actual class while each column

represents instances of the predicted class (in some literature it is vice versa). This effec-

tively means that numbers on the diagonal of the matrix represent the number of correctly

predicted samples per class, also called true positives. On the other hand, numbers off the

diagonal represent the number of incorrectly classified samples, also called false positives

and false negatives. E.g., the number in the first row and fifth column of a confusion matrix

stands for the number of samples that belong to first class but were classified as fifth class.

These samples are considered false negative for class 1 but false positive for class 5.

An example of a confusion matrix is shown in Figure 3.10.

Having a confusion matrix, all of the aforementioned metrics can be easily calculated.

Accuracy is the ratio of correctly classified observations to all observations:

accuracy =

∑
class true positiveclass∑

confusion matrix
(3.13)

27

Figure 3.10: Example of a confusion matrix

Recall (sensitivity) is the ratio of correctly classified observations to all observations

belonging to the actual class (it is computed for each class independently):

recall =
true positive

true positive + false negative
(3.14)

Precision (positive predictive value) is the ratio of correctly classified observations to all

observations in the predicted class (it is computed for each class independently):

precision =
true positive

true positive + false positive
(3.15)

F1 score is the weighted average, or rather a harmonic mean, of precision and recall (it

is computed for each class independently):

F1 = 2 ∗ recall ∗ precision
recall + precision

(3.16)

All of the metrics that are being calculated per class are averaged to obtain so-called

macro metrics.

These metrics are very informative even for imbalanced datasets - those with the majority

of data belonging to one class. Although our dataset is not like that, all these metrics are

important for getting an insight into the model’s performance.

3.6. Technical Stack

The solution for the microbe detection problem is implemented using the programming lan-

guage Python. Alongside standard Python libraries, one of the most important computational

libraries for this work was Pytorch.

28

Pytorch is an open-source machine learning framework that includes a two-fold usage -

tensor computation with GPU acceleration and a machine learning research platform with

maximum flexibility and speed. PyTorch defines a class called Tensor (torch.Tensor) to store

and operate on homogeneous multidimensional rectangular arrays of numbers. PyTorch Ten-

sors are similar to NumPy arrays, but can also be operated on a CUDA-capable Nvidia GPU.

The most important PyTorch modules include the Autograd module which provides an au-

tomatic differentiation method, the Optim module with a variety of optimization algorithms,

and the nn module with basic building blocks for graphs.

The evaluation of the model relied on Python’s sklearn library while the visualization

was done using utilities of matplotlib library.

To align a set of reads to a reference, minimap2 was used. minimap2 is a versatile

sequence alignment program that aligns DNA or mRNA sequences against a large reference

database.

The entire implementation is publicly available at GitHub.

29

msikic
Sticky Note
LInk ?

4. Experiments and Results

This section provides details on different experiments done on microbe detection problem

and the results of these experiments.

For all of the experiments, the basic architecture was afore-explained transformer-based

architecture for the representation pretraining but the hyperparameters of the network and

dataset setting were different. After the pretraining was done, a classification head was

added on top of the representation module, and classification fine-tuning was done.

Some of the hyperparameters were kept constant across different experiments. These

hyperparameters are shown in Table 4.1.

Table 4.1: Constant parameters

Parameter Constant

k 9

encoder layers 6

representation dim 192

optimizer SGD

scheduler stepLR

scheduler step 2500

gamma 0.99

SGD (Stochastic Gradient Descent) (Ketkar ((2017))) is a basic iterative method for op-

timizing an objective function. Although there are different advanced optimizing methods,

SGD showed as suitable for this task.

StepLR is a learning rate scheduler that decays the learning rate of each parameter group

by a predefined value - gamma, every "scheduler steps". After a predefined number of steps,

the current learning rate is multiplied by the gamma value to obtain a new learning rate for

the next scheduler steps.

Parameter k refers to the size of k-mers the original sequence is being fragmented into.

As the read length analysis in section 2.2.3 showed, setting k=9 seems like a reasonable

choice so that parameter was held fixed throughout all experiments.

30

When deciding on K for the KNN classifier, each model was testing with K ranging from

2 to 15 and one achieving the best results was chosen.

Details on experiment settings and the results will be provided in the following subsec-

tions.

4.1. Training on reference-sampled chunks

This experiment is done in somewhat idealized conditions. As it was mentioned earlier, real

data is noisy and of various lengths. On the other hand, the closest it can get to perfect

data is by sampling the genome references. Additionally, when sampling the references, the

length of sampled chunks can be predefined and set to a value that perfectly fits the input

dimensions of the representation network.

For this experiment, 300 000 samples were sampled from references of seven microbial

species.

For this experiment, the maximum sequence length is set to 512 and all of the output

vectors are mean averaged to obtain a final 192-dimensional sequence representation. Before

returning, the output is batch normalized.

24 epochs of representation learning with triplet loss were done. The margin was set to

2.5 and the loss in the 24th epoch was 0.21 (the initial value of the loss was 2.5 meaning that

the distance between an anchor sample and a positive sample was the same as the difference

between an anchor sample and a negative sample).

Evaluation of the network was done on a different set of chunks sampled from the same

references containing 7 000 samples (∼1 000 samples per reference). KNN results were very

similar irrespective of the number of nearest neighbors taken into account but the best result

was obtained for K=10. The classification results are shown in Figure 4.1.

The confusion matrix in subfigure 4.1a shows that there are two pairs of species often

mistaken, Salmonella enterica and Escherichia coli, and Enterococcus faecalis and Listeria

monocytogenes.

t-SNE plot of the representations can be seen in Figure 4.2.

The distribution of chunk representations shows that data is not clustered very well.

While four out of seven microbe species are separated quite well, Bacillus subtilis is par-

tially overlapped, Salmonella enterica is hidden behind Escherichia coli and Enterococcus

faecalis is hidden behind Listeria monocytogenes. It is quite interesting to see that cluster

belonging to one microbe species is additionally separated into subclusters. This could be

due to forming positive samples for an anchor based on the contig and mapping position on

the reference.

The representation network was then fine-tuned on a classification task. The classi-

31

(a) Confusion matrix for K=10 on the reference-sampled

dataset

Metric Value

Accuracy 66.54%

Precision 66.58%

Recall 66.55%

F1 66.33%

(b) Classification metrics

Figure 4.1: KNN classification results for K=10 after representation pretrainig

Figure 4.2: t-SNE visualization of reference-sampled chunks after representation pretraining

fication head was a simple fully connected layer with a 192-dimensional input and a 7-

dimensional output.

KNN results were similar irrespective of the number of nearest neighbors taken into

account but the best result was obtained for K=6 in this case as well. The classification

results are shown in Figure 4.3.

Results in Figure 4.3 show significant improvement of results after the fine-tuning. The

chunks are classified almost perfectly.

After taking a look at the distribution of reads in Figure 4.4, it is obvious that classifica-

32

(a) Confusion matrix for K=6 on reference-sampled

dataset

Metric Value

Accuracy 99.53%

Precision 99.53%

Recall 99.53%

F1 99.53%

(b) Classification metrics

Figure 4.3: KNN classification results for K=6 after classification fine-tuning

Figure 4.4: t-SNE visualization of reference-sampled chunks after classification fine-tuning

tion fine-tuning contributed to cluster separation.

However, these evaluations were done on reference-sampled chunks which are somewhat

idealized. To truly evaluate this model, it should be tested on a set of real reads. For this

purpose, a test set of real reads was sampled from the original Zymo mock community

database. 7 000 samples were sampled from 7 microbe species (1 000 per species).

The results of testing on a network that was pretrained on a representation task are shown

in Figure 4.5.

As Figure 4.5 shows, the results of the model pretrained on the triplet problem are poor.

33

(a) Confusion matrix for K=11 on dataset of real reads

Metric Value

Accuracy 59.59%

Precision 59.59%

Recall 60.19%

F1 58.86%

(b) Classification metrics

Figure 4.5: KNN classification results for K=11 after representation pretraining

Less than 60% of reads are classified correctly.

Figure 4.6: t-SNE visualization of real reads after representation pretraining

These results are supported by Figure 4.6 which shows that different species are not

separated very well. The results on the same dataset after fine-tuning the representation

model on the classification task are shown in Figure 4.7.

Figure 4.7 shows significant improvement of the results compared to results after repre-

sentation pretraining. These results are supported by Figure 4.8.

Although the results on real reads are significantly improved by performing classification

fine-tuning, the results on real reads are still not comparable to those on reference-sampled

chunks. This is expected since the model is trained solely on reference-sampled chunks

34

msikic
Sticky Note
clarify

(a) Confusion matrix for K=9 on dataset of real reads

Metric Value

Accuracy 87.51%

Precision 87.51%

Recall 89.47%

F1 87.64%

(b) Classification metrics

Figure 4.7: KNN classification results for K=9 after classification fine-tuning

Figure 4.8: t-SNE visualization of real reads after classification fine-tuning

which are idealized samples of data. For these reasons, real reads should be included in the

training. There are two possibilities, training solely on real reads or training on a combination

of reference-sampled chunks and real reads. While training solely on real data would make

the setting most truthful, it would also include having only noisy data. Reference-sampled

chunks bring stability and in a way augment the real data. For these reasons, it is decided to

train models with a combination of real data and reference-sampled chunks.

35

4.2. Training on a combination of reference-sampled chunks

and real reads

For this experiment, a new training dataset was formed out of 100 000 chunks sampled

from the references and 200 000 reads sampled from the original Zymo mock community

database. In the initial experiments, it was shown that reads of significantly shorter length

than the target length (9*512=4608 bases) brought too much noise into training which is why

reads shorter than 0.65*4608=2995 bases were filtered out of the training set.

The architecture of the network remained the same and representation training ran for 24

epochs with triplet loss converging from 2.5 (which was the margin) to 0.36. The perfor-

mance of the model was tested on a set of 7 000 real reads (1 000 from each microbe) and

the results can be seen in Figure 4.9.

(a) Confusion matrix for K=14 on dataset of real reads

Metric Value

Accuracy 62.58%

Precision 62.39%

Recall 62.59%

F1 62.35%

(b) Classification metrics

Figure 4.9: KNN classification results for K=14 after representation pretrainig

Figure 4.9 shows slight improvement on real reads once the training is done combining

reference-sampled chunks and real reads. However, the biggest problem remain two pairs of

species, Escherichia coli and Salmonella enterica, and Listeria monocytogenes and Entero-

coccus faecalis.

These results are supported by the distribution of reads per class shown in Figure 4.10.

Escherichia coli and Salmonella enterica, and Listeria monocytogenes and Enterococcus

faecalis are completely overlapped while Bacillus subtilis is partially overlapped by the same

two clusters.

The results after classification fine-tuning are shown in Figure 4.11.

The results show significant improvement in performance after classification fine-tuning.

These results are supported by the data distribution plot in Figure 4.12.

Figure 4.12 shows decent separation between different microbe clusters. The most prob-

36

Figure 4.10: t-SNE visualization of real reads after representation pretraining

(a) Confusion matrix for K=9 on dataset of real reads

Metric Value

Accuracy 95.19%

Precision 95.19%

Recall 95.20%

F1 95.19%

(b) Classification metrics

Figure 4.11: KNN classification results for K=9 after classification fine-tuning

lematic remain Salmonella enterica and Escherichia coli that also share the highest ANI score

which makes them the most similar species.

Now that KNN results show a decent microbe detection performance, it is interesting

to inspect how distant are representations of two chunks sampled from the same reference

and within <9 positions from each other (since the size of k-mers is set to 9). By choosing

starting positions in such a manner, a pair of very similar chunks with a completely different

sequence of 9-mers is sampled. For this purpose, a set of anchor chunks was sampled from

each of the seven references. Additionally, for each anchor, a chunk starting 5 bases from the

anchor start was sampled as well. That way, pairs of closely related chunks with no shared

37

Figure 4.12: t-SNE visualization of real reads after classification fine-tuning

9-mer embeddings were determined and forwarded to the network.

Figure 4.13: t-SNE for close reference-sampled chunks

Representations of such pairs of chunks are visualized in Figure 4.13. All samples be-

longing to the same microbe are visualized in the same color while each pair of neighbor

38

chunks is represented using the same shape. The figure shows that samples that are sampled

from the same reference and with a distance of <9 bases often have representations that are

closer to each other than to any other sample despite not sharing a sequence of k-mers. The

evaluation is done on a model that was fine-tuned on a classification task which shows that

fine-tuning on such task does not interfere with the representation task.

The length of the input sequence is limited to 512 input points (which corresponds to the

length of 4608 bases in the input read) and those reads that are longer than the set maximum

length are trimmed to maximum length. On the other hand, reads under 2995 bases are

considered to be extremely short, and noisy and are, therefore, removed from the training

dataset. This makes evaluating the performance of the model on a set of reads that are

shorter than 2995 bases and a set of reads that are longer than 4608 bases interesting.

(a) Confusion matrix for K=9 on dataset of short reads

Metric Value

Accuracy 79.57%

Precision 79.79%

Recall 79.57%

F1 79.62%

(b) Classification metrics

Figure 4.14: KNN classification results for K=9 on a set of short reads

Results on reads that are shorter than 2995 bases are shown in Figure 4.14. The biggest

problem remain Escherichia coli and Salmonella enterica since these are the two most similar

species.

Results on reads longer than 4608 bases are comparable to those on all reads longer than

2995 bases. This is expected since longer reads are being trimmed to the length of 4608

bases and then forwarded through the network.

However, since all of the previous results show that pairs of species with high ANI score

impose a significant problem to microbe detection, once there are more microbes in the

database, and many of them are quite similar to one another, taking only longer reads into

account (in their full length) might be necessary for successful microbe detection. There

are three options for including longer reads in their full length (or near their full length) in

microbe detection: training on longer input sequences, modifying representation learning,

and modifying classification learning, all three of which will be explored and presented in

39

(a) Confusion matrix for K=9 on dataset of long reads

Metric Value

Accuracy 95.41%

Precision 95.47%

Recall 95.41%

F1 95.41%

(b) Classification metrics

Figure 4.15: KNN classification results for K=9 on a set of long reads

the following section.

4.3. Extensions for longer reads

4.3.1. Training with longer input sequences

This experiment required one significant architectural change and that is the length of the

input sequence. While previous experiments were done on sequences with 512 input points,

this experiment was done on input sequences with a maximum length of 1024 input points

which, in combination with 9-mer as single-point inputs, results in network being able to

process reads of maximum length ≤9216 bases. As Table 2.4 shows, almost 92% of reads

fall into this category. The margin was set to 5, 36 representation, and 50 classification

training epochs were done. The performance of this model will be evaluated on reads that

are longer than 4806 bases since these are the reads that are expected to benefit from training

on longer sequences.

The results in figures 4.16 and 4.17 show that the model that was only pretrained on

the representation task still does not yield satisfactory results, especially if compared to the

model that was fine-tuned on the classification task. This model shows slight improvement

compared to results in Figure 4.15 but requires the input sequence to be twice as long to gain

small improvement.

4.3.2. Averaging representation learning

Having a model that expects longer sequences as the input creates heavier time and memory

demands and slows down the learning and inference process. Therefore, a different approach

40

(a) Confusion matrix for K=9 on dataset of long reads

Metric Value

Accuracy 65.60%

Precision 65.44%

Recall 65.60%

F1 65.21%

(b) Classification metrics

Figure 4.16: KNN classification results for K=9 after representation pretraining with max sequence

len = 9216

(a) Confusion matrix for K=9 on dataset of long reads

Metric Value

Accuracy 96.71%

Precision 96.89%

Recall 96.71%

F1 96.71%

(b) Classification metrics

Figure 4.17: KNN classification results for K=9 after classification fine-tuning

to including longer reads in their full length was explored. Averaging representation learning

implies training the model on a sequence of 512 input points, which corresponds to the

usual setting presented in this work. However, while reads longer than the maximum 4608

bases were trimmed in previous experiments, in this experiment they are treated differently.

Reads longer than the expected maximum length are being chunked into pieces of length

≤4608. The only chunk that is potentially shorter than 4608 bases is the last one. That

chunk was treated the same as reads shorter than 4608 bases were. If the last chunk is longer

than 0.65*4608=2995 bases it is padded and forwarded to the network, otherwise, it was

discarded. All of these chunks were forwarded into the network and once representation

vectors of all of the chunks were obtained, representation vectors of chunks belonging to the

same read were mean averaged to obtain a single representation vector for the entire read.

41

(a) Confusion matrix for K=14 on dataset of long reads

Metric Value

Accuracy 67.46%

Precision 70.34%

Recall 67.46%

F1 66.03%

(b) Classification metrics

Figure 4.18: KNN classification results for K=14 after representation averaging pretraining

The results on a set of reads longer than 4608 bases after representation pretraining are

shown in Figure 4.18. The results show slight improvement over training with longer input

sequences.

The results are, however, still not quite satisfactory which is why classification fine-

tuning was done here, as well.

(a) Confusion matrix for K=9 on dataset of long reads

Metric Value

Accuracy 98.14%

Precision 98.25%

Recall 98.14%

F1 98.15%

(b) Classification metrics

Figure 4.19: KNN classification results for K=14 after classification fine-tuning

The results after classification fine-tuning shown in Figure 4.19 show a significant im-

provement over representation pretraining. With an accuracy score over 98%, these are the

best results obtained on reads longer than the input sequence.

Since both representation pretraining, and classification fine-tuning results show some

improvement over previous methods, averaging representations for longer reads seems like

a valid approach to microbe detection task, especially when focusing on really long reads.

42

4.3.3. Majority voting classification learning

For majority voting classification learning, a network that was already pretrained on rep-

resentation task. That network was then used for majority voting classification learning.

Reads longer than 4608 bases are the focus of this approach, as well. Reads longer than

the expected maximum length are being chunked into pieces of length ≤4608. The only

chunk that is potentially shorter than 4608 bases is the last one. That chunk was treated the

same as reads shorter than 4608 bases were. If the last chunk is longer than 0.65*4608=2995

bases it is padded and forwarded to the network, otherwise, it was discarded. Representation

was created for each chunk and that representation was forwarded to the classification head.

Probabilities of belonging to each microbe class are output for all chunks that were forwarded

to the network. Logits for chunks belonging to the same read are then mean-averaged and

final read-level microbe prediction is done.

This experiment is done without combining the parametric classification fine-tuning with

non-parametric classification since the difference between this and other approaches is in

choosing the prediction based on averaged probabilities the classification head outputs per

chunk of read. The non-parametric approach requires removing the classification head from

the model, therefore eliminating the majority voting extension.

Majority voting classification fine-tuning ran for 35 epochs and was evaluated on a set of

reads longer than 4608 bases as well. The testing dataset consisted of 7 000 samples (1 000

samples per microbe). The results are shown in Figure 4.20.

(a) Confusion matrix for majority voting classification on

long reads

Metric Value

Accuracy 96.23%

Precision 96.23%

Recall 96.23%

F1 96.23%

(b) Classification metrics

Figure 4.20: Majority voting classification results

The results show that the majority voting approach comparable to previous results and

with a slight improvement over the original trimming approach. However, the results did not

exceed results obtained by mean averaging the chunk-level representations. That might be

43

a consequence of introducing high level of noise by mean-averaging the logits before per-

forming a single prediction. The results may be improved by performing a simple majority

voting on predictions rather than on logits.

4.4. Discussion

All of the previous results show that training a model on the representation task utilizing

triplet loss yields results that solely do not fulfill the need for an accurate microbe detection.

However, it provides a strong ground for the classification fine-tuning. Once the represen-

tation model is modified for the microbe classification task and fine-tuned on that task, the

microbe detection results improve significantly.

It is also showed that the accuracy is mostly compromised on a set of reads that are rel-

atively short. This is understandable taking into account that all of the microbes are quite

similar meaning they share a lot of regions, especially the short ones. All of these exper-

iments are done a set of reads and chunk belonging to one of the seven microbial species

included in this work. However, the microbe detection would in a realistic setting be applied

to a much bigger number of species which is when the similarity problem between different

species would intensify, especially for relatively short reads/regions.

On the other hand, performance on reads that are longer than the expected input sequence

is shown to be quite good, even in the initial setting where long reads were trimmed to maxi-

mum sequence length. All of the additionally explored training extensions designed to utilize

longer reads in their full (or near full) length have, however, shown slight improvements over

the initial trimming approach.

All of these results show that the focus of the future work should be on longer reads. By

focusing on these reads and further developing representation and classification techniques,

the system could be scalable to a significantly larger number of microbial species.

Of course, ideally, the representation training would be sufficient for an accurate non-

parametric microbe detection. Therefore, the accent of future work would primarily be on

improving representation learning methods by modifying triplet construction or finding a

completely new learning method for this task.

44

5. Conclusion

The main goal of this work was to find a fast and accurate method for microbe detection. Dif-

ferent deep learning settings were explored and evaluated on sets of reads originating from

seven microbial species: Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Listeria

monocytogenes, Pseudomonas aeruginosa, Salmonella enterica, and Staphylococcus aureus.

The datasets of reads are obtained through the third-generation - Nanopore, sequencing and

simulated chunks are obtained from genome references. Since the usual length of biological

data obtained through Nanopore sequencing has length that can go up to few thousand bases,

the dimensionality of the original data needed to be reduced because deep learning model

usually perform badly on sequences of such length. This was done by chunking the original

sequences in fragments of length k, so-called k-mers. Each k-mer then presented an input

point in the sequence.

The representation network architecture was based on a novel deep learning architecture

called the transformer. The transformer network is based on a deep learning mechanism

called attention and it revolutionized sequence modelling problems. For this work, the trans-

former network originally developed for natural language processing tasks was adapted to

microbe detection problem. First, the input sequences of k-mers needed to be converted into

a number representation which was through an embedding process where k-mer was rep-

resented by real-valued vector. The sequence of embedding vectors was then forwarded to

the representation network that output a sequence of updated embedding vectors for each

k-mer, so-called dynamic embeddings (whereas the initial embedding are called static em-

beddings). Final read-level representations were obtained by averaging dynamic k-mer em-

beddings. Representation learning process was followed by a classification part where each

representation was assigned a microbe.

The affect of different training settings on the microbe detection ability of a deep learning

model was explored by mainly focusing on variants of data used for training and possibilities

for extracting knowledge from long reads (since they showed a higher distinction potential).

For this purposes, apart from the initial tests where long reads were trimmed to maximum

input length, experiments with longer input sequences such as: representation averaging, and

majority voting classification were done to explore possible performance improvements for

45

long reads.

While current results show a satisfactory accuracy of microbe detection after the clas-

sification fine-tuning, the microbe detection ability of the network that was only trained on

representation task remains insufficient. The focus of the future work would, therefore, be on

exploring different variants of representation training process with an accent on longer reads

which provide more microbe-specific information. Additionally, since sequencing process

produces current signals that are afterwards being base called, future work could also explore

the possibility of including information extracted from the signals in the microbe detection

process.

46

BIBLIOGRAPHY

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align

and translate, 2016.

E. Hoffer and N. Ailon. Deep metric learning using triplet network, 2018.

N. Ketkar. Stochastic gradient descent. In Deep Learning with Python, pages 113–132.

Apress, 2017. doi: 10.1007/978-1-4842-2766-4_8. URL https://doi.org/10.

1007/978-1-4842-2766-4_8.

O. Kramer. K-nearest neighbors. In Dimensionality Reduction with Unsu-

pervised Nearest Neighbors, pages 13–23. Springer Berlin Heidelberg, 2013.

doi: 10.1007/978-3-642-38652-7_2. URL https://doi.org/10.1007/

978-3-642-38652-7_2.

I. Lee, Y. O. Kim, S.-C. Park, and J. Chun. OrthoANI: An improved algorithm and software

for calculating average nucleotide identity. International Journal of Systematic and Evo-

lutionary Microbiology, 66(2):1100–1103, Feb. 2016. doi: 10.1099/ijsem.0.000760. URL

https://doi.org/10.1099/ijsem.0.000760.

H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):

3094–3100, 05 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty191. URL

https://doi.org/10.1093/bioinformatics/bty191.

M.-T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural

machine translation, 2015.

H. M and S. M.N. A review on evaluation metrics for data classification evaluations. Inter-

national Journal of Data Mining & Knowledge Management Process, 5(2):01–11, Mar.

2015. doi: 10.5121/ijdkp.2015.5201. URL https://doi.org/10.5121/ijdkp.

2015.5201.

S. M. Nicholls, J. C. Quick, S. Tang, and N. J. Loman. Ultra-deep, long-read nanopore

sequencing of mock microbial community standards. GigaScience, 8(5), 05 2019. ISSN

47

2047-217X. doi: 10.1093/gigascience/giz043. URL https://doi.org/10.1093/

gigascience/giz043. giz043.

S. Sharma and S. Sharma. Activation functions in neural networks. Towards Data Science,

6(12):310–316, 2017.

L. van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine

Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/

vandermaaten08a.html.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin. Attention is all you need, 2017.

48

Rapid microbe detection using deep learning

Abstract

Microbes are microscopic organisms invisible to the naked eye with a significant role

in everyday life. The ability to detect and accurately classify them is essential to discover

diseases, prescribe medication, keep a healthy lifestyle in general. The main goal of this the-

sis is develop a deep learning method that can in a fast and accurate way detect a microbial

species from short fragments of that species. The architecture was based on a novel NLP

architecture called the Transformer, adapted to the microbe detection task and used to obtain

compressed representations of the sequenced DNA fragments. Once the compressed repre-

sentation were found, different classification methods were applied to output predictions of

microbial species.

Keywords: bioinformatics, microbe detection, deep learning, attention, transformers, triplet

loss, classification

Brza detekcija mikroba uporabom dubokog učenja

Sažetak

Mikrobi su mikroskopski organizmi nevidljivi golom oku, ali s vrlo važnom ulogom

u svakodnevnom životu. Mogućnost njihovog prepoznavanja i točne klasifikacije osnova

je u otkrivanju bolesti, prepisivanju lijekova i održavanju zdravog načina života generalno.

Glavni cilj ovog rada bio je razviti metodu baziranu na dubokom učenju koja na brz i točan

način otkriva mikrob na temelju kratkih fragmenata te vrste. Arhitektura mreže bazirana je

na novoj arhitekturi prezentiranoj u sklopu obrade prirodnog jezika, transformator, koja je za

potrebe detekcije mikroba prilagod̄ena i korištena u svrhe dobivanja sažetih reprezentacija

sekvencioniranih fragmenata DNA. Kada su sažete reprezentacije pronad̄ene, različite klasi-

fikacijske metode korištene su za finalnu predikciju vrste mikroba.

Ključne riječi: bioinformatika, detekcija mikroba, duboko učenje, pozornost, transformator,

trojni gubitak, klasifikacija

