

Table of contents

Introduction 1

1. Methods 2
1.1. Overlapping Regions 2
1.2. Minimizer Index 4

1.2.1. TFIDF Index Filtering 5
1.2.2. Index Construction 6

1.3 Mapping 8
1.3.1. Counting Hits 8
1.3.2. Selecting Regions 11
1.3.3. Approximating Mapping Positions 12
1.3.4. Finding Matches 14
1.3.5. Chaining 15
1.3.6. Pseudocode and Analysis 16

2. Implementation 18
2.1 Details 18

3. Results 20

Conclusion 24

References 25

Summary 26

Sažetak 27

Introduction

Mapping DNA reads to a reference genome is a common problem in

bioinformatics. It is usually much less computationally expensive than assembling

reads into a genome or transcriptome. There are many mapping tools that

implement different approaches that have evolved from the seed-and-extend

approach to newly popular sketch-based methods. Sketch-based algorithms

achieve fast runtimes on large sequences because they employ dimensionality

reduction, using only a subset of k-mers present in the sequence to compactly

represent the whole sequence. Minimap2 is a versatile mapping/alignment tool

that implements this idea and is considered the industry standard.

Advancements in DNA sequencing technologies have led to an explosive growth

of the amount of sequencing data being generated every year. As such, efficient

algorithms are needed in order to process this large amount of data. The three

major sequencing technologies are Illumina, Pacific Biosciences SMRT and

Oxford Nanopore Technologies. As these technologies become cheaper and

produce more accurate and longer reads, algorithms can be improved by utilizing

the properties of technology specific reads.

Usually there is a tradeoff between read accuracy and length, so algorithms were

developed for both short and highly accurate reads and long but error-prone

reads. However, the latest advancement in Pacific Biosciences SMRT technology

produces both highly accurate and long reads called High Fidelity (HiFi) reads.

In this paper we propose a new mapping algorithm, hifimap, which utilizes

properties of HiFi reads in order to achieve faster runtimes and lower memory

requirements without sacrificing mapping accuracy. We will introduce the hifimap

algorithm, discuss its implementation and evaluate the performance and accuracy

of hifimap by comparing it to minimap2 on both simulated and real data.

1

1. Methods

HiFi reads have an accuracy higher than 99% and a light-tailed narrow length

distribution with the maximal mean of around 25kbp. Hifimap uses these

properties in order to identify short candidate regions on the reference genome

and then tries to find a mapping in those regions by finding minimizer (Roberts et

al., 2004) matches and chaining them in a similar manner as minimap2. The idea

is to minimize the length on which chaining is performed. Finding candidate

regions is done by counting the number of minimizer hits in each region and using

a strategy to choose the most fitting candidates. Furthermore, mapping positions

can be approximated with a slightly lower accuracy just by observing minimizer

hits in neighbouring regions without the need for chaining.

1.1. Overlapping Regions

We partition the target sequence into logical regions of the same length where

each two neighbouring regions overlap by exactly half region length.

Definition

Region of some target sequence is an interval of positions ,𝑅
𝑟

[𝑟𝐴, (𝑟 + 2)𝐴 >

, where = half region length and = target sequence𝑟 = 0, ..., 𝑓𝑙𝑜𝑜𝑟(𝐿/𝐴) − 1 𝐴 𝐿

length.

A target sequence contains exactly regions, where each region𝑓𝑙𝑜𝑜𝑟(𝐿/𝐴) 𝑅
𝑟

starts at position and has length , as depicted in Fig 1.1.𝑟𝐴 2𝐴

Fig 1.1 Partitioning target sequence into regions

2

Lemma

If a substring of length is taken from the target sequence, its starting and ending𝐴

positions must both be in at least 1 same region.

In other words, at least 1 region will fully contain the taken substring.

Proof

Let’s assume a target sequence of length .𝐿𝐴

Let be an interval of target sequence positions ,𝐼
𝑟

[𝑟𝐴, (𝑟 + 1)𝐴 >

.𝑟 = 0, ..., 𝐿 − 1

Fig 1.2 Intervals on target sequence𝐼
𝑟

Then the following axioms hold:

1. region consists of exactly positions𝑅
𝑟

𝐼
𝑟
 ⋃ 𝐼

𝑟+1

2. if a substring of length has a starting position in , then it’s ending position𝐴 𝐼
𝑟

must be in .𝐼
𝑟+1

From (1) and (2) we can infer that all substrings of length with a starting position𝐴

in are fully contained in region .𝐼
𝑟

𝑅
𝑟

Since intervals contain all possible starting positions of substrings of𝐼
0
, 𝐼

1
, ..., 𝐼

𝐿−1

length , the lemma must hold.𝐴

Generally, the reference sequence length doesn’t have to be a factor of , but it’s𝐴

not difficult to show that the same idea still applies. Notice that all positions from

3

belong within 2 regions, while the first and last positions of the[𝐴, (𝐿 − 1)𝐴 > 𝐴 𝐴

reference sequence belong to only 1 region.

In the context of mapping, substrings of length taken from the target sequence𝐴

are HiFi reads. As mentioned, HiFi reads have a narrow length distribution so we

can set to be the average read length in our dataset and as a result, a significant𝐴

percentage of each read will be contained inside 1 region. In practice we usually

set to be a bit higher than the average read length since we want each read to𝐴

be fully covered by 1 region. Hifimap algorithm is quite robust to large values of ,𝐴

however setting too high will affect hifimaps performance. The larger we set ,𝐴 𝐴

the more hifimap algorithm morphs into the minimap algorithm. If we set to equal𝐴

half the target sequence length, hifimap algorithm and minimap algorithm become

equivalent. Our approximation method on the other hand is quite sensitive to

values of as it only performs well when ~ read length.𝐴 𝐴

1.2. Minimizer Index

Minimizer sampling was introduced by Roberts et al. (2004). It is a method of

selecting k-mers from a sequence such that if two sequences are similar enough,

the same k-mers will be selected from both. Minimap2 collects reference

sequence minimizers and indexes them in a hash table with the key being the

minimizer value, and value being a list of positions of minimizers whose value is

the same as the key. It then maps each query sequence by sampling its

minimizers and querying the index in order to find exact matches. These matches

are then chained using dynamic programming and exact mapping positions are

found.

The idea behind the hifimap algorithm is to rapidly count the number of minimizer

hits in each region and then compute and chain the exact minimizer matches only

on most prominent regions. In order to achieve this, hifimap employs a similar

indexing scheme as minimap2 but instead of mapping each minimizer value to a

list of positions, it maps each minimizer value to a list of regions which contain that

minimizer. Alongside each region, it also stores term frequency, the number of

times a specific minimizer has occurred in that region. We utilize this value in the

4

counting procedure in order to not overcount the number of minimizer hits in each

region.

Since we don’t store each position of the minimizer's occurrence but merely it’s

regions, we expect our index to be more memory efficient. In particular, we

achieve memory savings when the same minimizer occurs multiple times in the

same region.

1.2.1. TFIDF Index Filtering

Minimap2 dismisses the most frequent reference minimizers in order to reduce

noise in the mapping procedure. Hifimap’s region partitioning allows us to employ

the TFIDF(Term frequency - Inverse document frequency) method from Natural

Language Processing in order to achieve the same goal. TFIDF is widely used by

search engines to determine how significant a keyword is to a document in a

collection or corpus. Similarly, hifimap uses TFIDF to determine the significance of

minimizer occurrences in each region within a context of a corpus of all existing

regions on the target sequence.

We can denote each index entry as a 3-tuple where is the𝑒 = (𝑚, 𝑅
𝑟
, 𝑡𝑓) 𝑚

minimizer value, the region and the term frequency of minimizer in region𝑅
𝑟

𝑡𝑓 𝑚

.𝑅
𝑟

We compute the TFIDF score for each index entry with the following formula:𝑒

(1)𝑇𝐹𝐼𝐷𝐹(𝑒) = 𝑇𝐹(𝑒) * 𝐼𝐷𝐹(𝑒)

where

𝑇𝐹(𝑒) = 𝑒. 𝑡𝑓

𝐼𝐷𝐹(𝑒) = 𝑙𝑜𝑔
𝑒
(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 𝑒.𝑚 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛)

represents the minimizer's importance in a specific region and𝑇𝐹(𝑒) 𝐼𝐷𝐹(𝑒)

represents the minimizer's cross-region importance. Multiplying these two terms

yields a value that represents the minimizer’s importance in a specific region in the

context of all existing regions.

5

We expect that each region contains approximately the same number of

minimizers, so there is no need to normalize the term frequency by dividing it with

the total number of (not necessarily distinct) minimizers that appear in the

observed region, as is usually done in the TFIDF method when documents contain

differing amounts of keywords.

Before inserting a 3-tuple in the Index, we compute it’s TFIDF value and𝑒

compare it to the threshold value. If passes the threshold, we insert it in𝑇𝐹𝐼𝐷𝐹(𝑒)

the Index, otherwise we dismiss it. This further reduces Index memory

requirements, but adds additional time overhead to Index construction since we

need to compute the minimizer term frequency and count the number of regions

minimizer appears in, in order to compute .𝑒. 𝑚 𝑇𝐹𝐼𝐷𝐹(𝑒)

It is not clear how to choose the appropriate TFIDF threshold. Hifimap sets the

threshold to be the TFIDF value of singleton minimizers, minimizers with values

that appear only once in the minimizer sample.

(2)𝑇𝐹𝐼𝐷𝐹
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 = 𝑙𝑜𝑔
𝑒
(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛𝑠

2)

This way we are certain that at least singleton minimizers will pass the TFIDF filter

which is important since matching singleton minimizers is the best indication of an

appropriate mapping.

In our implementation we allowed users to offset this value by some constant

defined at the start of the program in order to allow further experimentation.

1.2.2. Index Construction

Hifimap’s Index is constructed by first collecting reference minimizers and sorting

them by value. We can then construct the Index with one iteration over the sorted

list of minimizers by buffering regions of minimizers with the same value, since

they will appear as neighbours in the sorted minimizer list. Each buffer counts the

number of occurrences of each inserted region and hence contains (region, term

frequency) pairs of all minimizers with the same specific value. Each buffer

contains enough information to compute the TFIDF of all pairs inside the buffer.

When there are no more regions to be inserted in the current buffer, we can iterate

6

over the buffer and compute TFIDF scores of all pairs and if they pass the

threshold insert them in the Index.

Algorithm 1 Index construction

Input: Target sequence

Output: Minimizer hash table

Function ConstructIndex(target):

Sketch = ComputeMinimizers(target)

SortByValue(Sketch)

Index ← Empty hash table

Buffer ← Empty buffer object

i ← 1

while i < Sketch.size():

if Sketch[i] == Sketch[i-1]

Buffer.insert(Sketch[i-1].regions())

else

Buffer.insert(Sketch[i-1].regions())

CheckThresholdAndInsert(Buffer, Index)

Buffer.clear()

i++

return Index

In the given pseudocode buffer is an object that counts the number of

occurrences of each region (ie. term frequency) and also stores the number of

distinct regions inserted in the buffer (used to compute Idf).

CheckThresholdAndInsert() is a method that computes TFIDF values for

each (region, term frequency) pair in the buffer and if it passes the TFIDF

threshold, inserts the pair in the Index under the key of the minimizer value

represented by the buffer. ComputeMinimizers() simply returns a minimizer

sample from the given sequence.

7

1.3. Mapping

Mapping a query sequence to the target sequence means identifying intervals on

the target which are highly similar to the corresponding intervals on the query. The

result of mapping can be 0 or more found intervals. Since target sequences can be

very large, hifimap first reduces the search space by identifying regions which

seem the most prominent to contain some highly similar interval. Then it finds and

chains exact minimizer matches between the query sequence and selected

regions. The positions of the first match in every chain correspond to the

appropriate starting positions of significantly similar intervals between the query

and target sequence. In the same manner, positions of the last match in every

chain correspond to the ending positions of the same intervals.

1.3.1. Counting Hits

Hifimap first collects minimizers from the query which are then used as seeds to

query the Index. Given that minimizer occurs times in the query, then for each𝑚 𝑘

pair obtained from querying the Index using the key we apply the(𝑅
𝑟
, 𝑡𝑓) 𝑚

following heuristic to count region hits:

(3)𝐻𝑖𝑡𝑠[𝑅
𝑟
] += 𝑚𝑖𝑛(𝑘, 𝑡𝑓)

Notice that after applying this heuristic to every distinct query minimizer, 𝐻𝑖𝑡𝑠[𝑅
𝑟
]

gives us a tight upper bound on the length of a chain consisting of minimizer

matches between the query and region . Our intuition is simple: the higher the𝑅
𝑟

upper bound on the length of a chain, the higher the probability that a significantly

similar interval exists between region and the query. Conversely, a low upper𝑅
𝑟

bound on the length of a chain strictly limits the significance of a possible similar

interval between the region and the query. This is a heuristic since there is no

guarantee that an actual chain of length will be found because that𝐻𝑖𝑡𝑠[𝑅
𝑟
]

depends on the relative ordering of minimizer matches which we didn’t take into

account. Nevertheless, this does allow us to efficiently identify regions where a

long chain is possible, and dismiss regions where it is not.

8

Another heuristic that imposes naturally would be since there𝐻𝑖𝑡𝑠[𝑅
𝑟
] += 𝑘 · 𝑡𝑓

are exact minimizer matches with the minimizer value between the query𝑘 · 𝑡𝑓 𝑚

and region . This heuristic however is too optimistic and could lead to𝑅
𝑟

overcounting hits and thus overestimating the likelihood of finding a significantly

similar interval in the given region.

Example:

Assume that minimizer appears times in the query and .𝑚
𝑘

𝑘 𝑘 = 1, ..., 5

For simplicity, assume Index:

𝑚
1

→ [(𝑅
7
, 10)]

𝑚
2

→ [(𝑅
9
, 3), (𝑅

12
, 3)]

𝑚
3

→ [(𝑅
5
, 1), (𝑅

9
, 3)]

Recall that our Index is a hash table in which each minimizer is mapped to a list of

pairs, meaning that the given minimizer appears times in region .(𝑅
𝑟
, 𝑡𝑓) 𝑡𝑓 𝑅

𝑟

Applying heuristic (3) would yield:

𝐻𝑖𝑡𝑠[𝑅
5
] = 1, 𝐻𝑖𝑡𝑠[𝑅

7
] = 1, 𝐻𝑖𝑡𝑠[𝑅

9
] = 2 + 3 = 5, 𝐻𝑖𝑡𝑠[𝑅

12
] = 2

Take for example region , minimizer appears 2 times in the query sequence𝑅
9

𝑚
2

and 3 times in , so we add to . In the same way, minimizer𝑅
9

𝑚𝑖𝑛(2, 3) 𝐻𝑖𝑡𝑠[𝑅
9
] 𝑚

3

appears 3 times in the query sequence and 3 times in , so we add to𝑅
9

𝑚𝑖𝑛(3, 3)

.𝐻𝑖𝑡𝑠[𝑅
9
]

By observing these Hits values we can conclude that the longest chain is possible

in region and therefore is the most prominent region.𝑅
9

𝑅
9

On the other hand applying the heuristic would yield:𝐻𝑖𝑡𝑠[𝑅
𝑟
] += 𝑘 · 𝑡𝑓

𝐻𝑖𝑡𝑠[𝑅
5
] = 3, 𝐻𝑖𝑡𝑠[𝑅

7
] = 10, 𝐻𝑖𝑡𝑠[𝑅

9
] = 6 + 9 = 15, 𝐻𝑖𝑡𝑠[𝑅

12
] = 6

9

We would again identify region as the most prominent region, however it is hard𝑅
9

to provide a sensible interpretation of these results. Notice also that region is𝑅
7

drastically overvalued.

We will now supply the pseudocode for counting hits.

Algorithm 2 Counting hits

Input: Query minimizers sorted by value, Target Index

Output: Hits array

Function CountHits(QuerySketch, Index):

Hits[] ← Array of size = total number of regions, all elements set to zero

i ← 1

cnt ← 1

while i < QuerySketch.size():

if QuerySketch[i] == QuerySketch[i-1]

cnt++

else

for each (Rr, tf) in Index[QuerySketch[i-1]]:

Hits[Rr] += min(cnt, tf)

cnt ← 1

return Hits

The time complexity of this algorithm is , where is the length of the𝑂(𝑄 * 𝐿/𝐴) 𝑄

query sequence, the length of the target sequence and half of the region𝐿 𝐴

length. The term , after flooring, equals the total number of regions in the𝐿/𝐴

reference sequence. We expect this algorithm to be somewhat faster than

minimap2’s algorithm for finding minimizer matches between the query and target

sequence since the total number of regions is less than the total number of

possible minimizer positions.

10

1.3.2. Selecting Regions

After computing Hits, hifimap chooses the most prominent regions on which it will

find and chain exact minimizer matches. The simplest strategy is to select 𝑘

regions with the highest Hits score that is larger than some threshold , whereℎ 𝑘

and are user defined constants. This strategy is inefficient as it overlooks the factℎ

that the regions are overlapping so in practice it often chooses neighbouring

regions which is redundant. It’s important to note that each additional selected

region adds additional overhead which we want to minimize. Let’s suppose that a

significant mapping can be found in region . Then it is highly probable that𝑅
𝑟

regions and will both have a large Hits score as they overlap with region𝑅
𝑟−1

𝑅
𝑟+1

. Furthermore, the following invariant holds:𝑅
𝑟

(4)𝐻𝑖𝑡𝑠[𝑅
𝑟
] ≤ 𝐻𝑖𝑡𝑠[𝑅

𝑟−1
] + 𝐻𝑖𝑡𝑠[𝑅

𝑟+1
], 𝑟 = 1, ..., 𝑓𝑙𝑜𝑜𝑟(𝐿/𝐴) − 1

We will not formally prove this invariant but we will provide some intuition. All hits

in the first half of region are also hits in region and all hits in the second𝑅
𝑟

𝑅
𝑟−1

half of region are also hits in region . However, hits contained in the first𝑅
𝑟

𝑅
𝑟+1

half and the second half of regions and respectively, are not part of𝑅
𝑟−1

𝑅
𝑟+1

region and hence the less or equal sign.𝑅
𝑟

If a region has a higher Hits score than each of its neighbours, there is no need𝑅
𝑟

to select the neighbours. Selecting only region is sufficient since it contains𝑅
𝑟

most, if not all hits from both its neighbouring regions. Therefore we propose the

following strategy of selecting the most prominent regions:

Select regions with the highest Hits score that is larger than𝑘

some threshold without selecting neighbouring regions. (5)ℎ

In practice, a low value for yields accurate and satisfying results and minimizes𝑘

overhead.

11

1.3.3. Approximating Mapping Positions

After computing , ie. upper bounds on the lengths of chains, we can already𝐻𝑖𝑡𝑠

approximate mapping positions on the reference just by observing Hits scores of

neighbouring regions. Consider the following example:

Suppose a substring of length A was taken from the reference and

is the highest Hits score. gives𝑆 = 𝐻𝑖𝑡𝑠[𝑅
𝑟
] = 𝐻𝑖𝑡𝑠[𝑅

𝑟−1
] 𝐻𝑖𝑡𝑠[𝑅

𝑟
] = 𝐻𝑖𝑡𝑠[𝑅

𝑟−1
]

us a strong indication that the substring is taken from the interval [𝑟𝐴, (𝑟 + 1)𝐴 >

as depicted in Fig 1.3. We can not guarantee that the substring is taken from the

mentioned interval because of noise that might be originating from the first half

and second half of regions and respectively, however in practice this is𝑅
𝑟−1

𝑅
𝑟

highly unlikely.

Fig 1.3 Substring taken from an interval colored light gray

We can further generalize this by observing the ratio between Hits scores of

neighbouring regions. If for example makes up 60% of and𝐻𝑖𝑡𝑠[𝑅
𝑟−1

] 𝐻𝑖𝑡𝑠[𝑅
𝑟
]

makes up the remaining 40% we can approximate the mapping interval𝐻𝑖𝑡𝑠[𝑅
𝑟+1

]

as: , as depicted in Fig 1.4.[(𝑟 + 1)𝐴 − 0. 6𝐴, (𝑟 + 1)𝐴, + 0. 4𝐴 >

12

Fig 1.4 Substring taken from an interval colored light gray

The general conclusion is as follows: If region is a selected region, we can𝑅
𝑟

approximate the mapping interval on the target sequence as:

[(𝑟 + 1)𝐴 −
𝐻𝑖𝑡𝑠[𝑅

𝑟−1
]

𝐻𝑖𝑡𝑠[𝑅
𝑟
] · 𝐴, (𝑟 + 1)𝐴 +

𝐻𝑖𝑡𝑠[𝑅
𝑟+1

]

𝐻𝑖𝑡𝑠[𝑅
𝑟
] · 𝐴>

and we simplify it to:

, where[𝑝, 𝑝 + 𝐴 > 𝑝 = (𝑟 + 1)𝐴 −
𝐻𝑖𝑡𝑠[𝑅

𝑟−1
]

𝐻𝑖𝑡𝑠[𝑅
𝑟
] · 𝐴

For the special case when region is selected, we can approximate the interval𝑅
0

as:

, where[𝑝 − 𝐴, 𝑝 > 𝑝 = (𝑟 + 1)𝐴 +
𝐻𝑖𝑡𝑠[𝑅

1
]

𝐻𝑖𝑡𝑠[𝑅
0
] · 𝐴

This approximation method implies that the entire query sequence is mapped to

the approximated interval. In terms of accuracy, it relies heavily on the assumption

that ~ query sequence length. We have also found that the density of minimizers𝐴

can affect the accuracy, since higher density leads to more precise Hits ratios.

13

1.3.4. Finding Matches

For each selected region hifimap finds exact minimizer matches between the𝑅
𝑟

query sequence and region . This can be accomplished in a few different ways.𝑅
𝑟

If a large value is expected, or in other words, we need to find minimizer𝑘

matches between the query sequence and a large number of regions, perhaps the

most efficient approach is to index query minimizers in a minimap2-like fashion.

Then we can simply iterate over minimizers of each selected region and find

matches by querying this index. On the other hand, indexing proves to add a

significant overhead for low values of which are used in practice. Therefore𝑘

hifimap adopts a different approach.

For each selected region hifimap collects region minimizers and sorts them by

value and then employs a 2-pointer algorithm similar to the merge subroutine in

merge-sort in order to find minimizer matches. Keep in mind that we have

previously collected and sorted query minimizers in order to count hits. This

algorithm is commonly used in read-to-read mapping tools and makes sense since

we can consider each region as a target read which is twice longer than the query

read.

We will now address different approaches to collecting region minimizers. The

most straightforward approach is to simply compute the minimizers dynamically by

iterating over each selected region. Considering all regions, the time complexity𝑘

of this is but in practice we can consider and to be constants so this𝑂(𝑘𝐴) 𝑘 𝐴

would effectively be . In fact, we can consider the entire process of finding𝑂(1)

minimizer matches to be in practice. This constant time, however, is quite𝑂(1)

large and noticeable as it consumes a considerable share of runtime in the entire

mapping procedure when mapping to short reference sequences. For example, in

our experimentation dynamically computing region minimizers took up ~60% of

runtime of the entire mapping procedure when mapping to a target sequence of

length . As expected, we have found that this percentage decreases as we106

increase the target sequence length.

It’s important to notice that we have already computed minimizers from all regions

in the Index Construction algorithm but we didn’t store them in memory. In order to

14

make hifimap competitive with other mappers on both long and short reference

sequences, we decided to store precomputed minimizers from all regions in

memory and then we can simply fetch minimizers from selected regions at

runtime. This of course comes with an additional memory cost, however it is used

only when mapping to short reference sequences which don’t take up much

memory anyway. On large reference sequences, hifimap sticks with dynamically

computing minimizers as this constant time becomes imperceptible and the

additional memory cost would be too great.

If we don’t have strict memory requirements and using more memory for short

reference sequences is acceptable, the process of finding matches can be further

improved by precomputing minimap2-like indexes for each existing region. The

algorithm would then simplify to just iterating over query minimizers and finding

matches by querying indexes of selected regions. Hifimap doesn’t implement this

approach for the sake of simplicity and since bioinformaticians mostly care about

large reference sequences.

1.3.5. Chaining

After finding minimizer matches between the query sequence and all selected

regions, the last step is to perform chaining. Chaining is a process of finding the

maximal collinear subset of matches by solving the longest increasing

subsequence problem. Before actual chaining, clustering is performed on the list

of found matches and a chain is computed for each cluster. Each chain then

represents a mapping result.

Hifimap performs chaining in the same fashion as minimap2. However, the list of

found matches on which chaining is performed is significantly smaller since it

consists only of matches found on selected regions. On the other hand, minimap2

performs chaining on matches found throughout the whole reference sequence.

We argue that this difference will be noticed in runtimes when mapping to

sequences with highly repeating minimizers since minimap2 should then find a

significantly larger number of minimizer matches that need to be chained.

15

1.3.6. Pseudocode and Analysis

At the end of this section, we provide the pseudocode and analysis of the entire

mapping procedure.

Algorithm 3 Mapping a query sequence

Input: Query sequence, Target Index

Output: Chained minimizer matches

Function Map(Query, Index, k, h):

QuerySketch = ComputeMinimizers(Query)

SortByValue(QuerySketch)

Hits = CountHits(QuerySketch, Index)

Matches ← Empty list

for each region in SelectRegions(Hits, k, h):

RegionSketch = CollectRegionMinimizers(region)

for each match in FindMatches(QuerySketch, RegionSketch):

Matches.insert(match)

return Chain(Matches)

In the given pseudocode SelectRegions(Hits, k) is a function that returns a

list of selected regions using some strategy, for example strategy (5).

CollectRegionMinimizers(region) returns a list of minimizers belonging to

a given region. It can be implemented in a few different ways as discussed in

section 1.3.4. FindMatches(QuerySketch, RegionSketch) returns a list of

minimizer matches found between the two given sketch lists using the 2-pointer

algorithm mentioned in section 1.3.4 or some other method. The pseudocode for

CountHits(QuerySketch, Index) is given in section 1.3.1.

16

In our analysis we will use the following notation:

Let be the length of the target sequence, the length of the query sequence and𝐿 𝑄

half of the region length.𝐴

In terms of time complexity, notice that only functions CountHits() and

SelectRegions() depend on the length of the target sequence. This

dependency is further dampened because they do not solely depend on , but𝐿

actually depend on the total number of regions which is times smaller than .𝐴 𝐿

Their time complexities are and , respectively, assuming𝑂(𝑄 · 𝐿/𝐴) 𝑂(𝐿/𝐴) 𝑘 = 1

is given to SelectRegions() so it only needs to find the region with the

maximum score. We can consider everything else to be constant time𝐻𝑖𝑡𝑠

overhead, since ~ ~ const. in practice. Also, it’s worth mentioning that the𝑄 𝐴

worst case scenario for CountHits() is highly unlikely to occur.

On the other hand, minimap2 finds and chains exact minimizer matches between

the query and the entire reference sequence. We argue that the time complexity of

this has a larger multiplicative constant hidden in its Big O notation than that of

hifimap. Therefore, we expect that asymptotically, the runtime of hifimap should

grow slower than the runtime of minimap2.

We have tested hifimap on both synthetic and real data and compared the results

to minimap2. The accuracy was estimated as a percentage of minimap2 mappings

which have equivalent hifimap mappings with some tolerance of t base pairs.

17

2. Implementation

Hifimap is implemented in C++ and supported on Linux, MS Windows, and Mac

OS. It can be used as a C++ library or as a stand-alone application. We have

implemented hifimap on top of ram, which is a C++ implementation of minimap

with a few modifications.

Hifimap offers quite a large number of options and can be widely configured.

Hifimap’s dependencies are:

● gcc 4.8+ | clang 3.5+

● cmake 3.11+

● pthread

● zlib 1.2.8+

● rvaser/biosoup 0.10.0

● rvaser/thread_pool 3.0.3

● rvaser/bioparser 3.0.13

Hifimap uses the module bioparser for parsing input sequences, biosoup for

efficient data structures used to store biological data and thread_pool for mapping

query sequences in parallel on multiple threads.

2.1. Details

When creating the Index, we do not directly insert (region, term frequency) pairs in

the hash table but rather append them in an array. The hash table only keeps the

intervals on the array. This is designed to reduce heap allocations and cache

misses.

We have implemented strategy (5) as a region selection strategy and have

optimized it for to only find the region with the maximum Hits score.𝑘 = 1

18

An approximation method described in section 1.3.3. is used when given the

option --approx. This results in a faster runtime as we only compute Hits and

immediately approximate mapping positions but may reduce accuracy.

Following the discussion on collecting region minimizers in section 1.3.4, we have

given the user the option to choose between extra time overhead or additional

memory cost. By default hifimap uses additional memory in order to reduce the

time overhead. This can and should be toggled when mapping to large reference

sequences using the option --save-mem (for the lack of a better name).

If given the option --minhash, hifimap uses only a portion of collected minimizers

which leads to significant runtime improvement but could affect accuracy.

All of the sorting in hifimap is done using Radix sort.

19

3. Results

Hifimap was able to achieve competitive runtimes on both short and long

reference sequences, while especially excelling on very large sequences with

highly repeating minimizers. The constant time overhead proved to be significant

when mapping to short sequences with a large percentage of singleton

minimizers. However, it seems to pay off when reference sequence length

increases.

We have conducted tests on both minimap2 and hifimap and compared the

results. Accuracy of hifimap was estimated relative to minimap2, by computing a

percentage of minimap2 mappings for which an equivalent hifimap mapping exists

with tolerance of t base pairs. We denote this percentage as coverage, in order to

not confuse it with actual mapping accuracy.

In order to simulate HiFi reads, we have synthetically generated for each reference

sequence 100k reads, all of length exactly 20k base pairs, with an error rate of

0.5%. At the end we also present results on an actual HiFi dataset.

All tests were conducted using 4 threads with kmer length set to 15 and window

length set to 5, all other options were left as default on both minimap2 and hifimap.

We will now present results from our experimentation with differing reference

sequence lengths.

Table 3.1 Synthetic target, length , 99.94% singleton minimizers106

minimap2 hifimap hifimap
--save-mem

hifimap
--approx

Indexing time 0.078s 0.2676s 0.21s 0.2s

Mapping time 128.3s 182.4s 227.7s 136.9s

Peak RSS 0.964GB 0.34GB 0.33GB 0.33GB

mappings 100000 100000 100000 100000

coverage t = 30bp - 100% 100% 33.6%

coverage t = 100bp - 100% 100% 82.02%

coverage t = 200bp - 100% 100% 98.78%

20

Table 3.2 Synthetic target, length , 93.59% singleton minimizers108

minimap2 hifimap hifimap
--save-mem

hifimap
--approx

Indexing time 7.63s 15.76s 13.67s 12.41s

Mapping time 170.1s 232.7s 282.3 206.2s

Peak RSS 2.23GB 2.97GB 2.43GB 2.43GB

mappings 100000 100000 100000 100000

coverage t = 30bp - 100% 100% 30.5%

coverage t = 100bp - 100% 100% 77.55%

coverage t = 200bp - 100% 100% 97.64%

It seems that, compared to minimap2 hifimap performs worse on short reference

sequences. We would argue that a high percentage of singleton minimizers is an

even more important factor than the reference sequence length. Due to most

minimizers being singletons, minimap2 finds a low number of minimizer matches

and does so quickly just by querying the Index. A low number of minimizer

matches implies a fast chaining process which results in minimap2’s fast runtime.

Hifimap on the other hand first computes Hits scores, applies some strategy to

select regions and uses a 2-pointer merge-style algorithm to find hits between the

query sequence and selected regions. This is simply redundant when dealing with

sequences with a high percentage of singleton minimizers as the resulting list of

minimizer matches that gets chained is about the same size as minimap2’s. The

main idea behind hifimap and the reason for the added overhead is to reduce this

list down to a maximal constant size, independent of reference sequence length.

Mapping to short sequences can further be improved by precomputing

minimap2-style indexes for each existing region and finding matches by just

iterating query minimizers and querying indexes of corresponding regions, as

discussed in section 1.3.4. This would deplete the need for the 2-pointer algorithm

for finding matches used in the hifimap implementation.

21

Table 3.3 Synthetic target, length , 53.5% singleton minimizers109

minimap2 hifimap hifimap
--save-mem

hifimap
--approx

Indexing time 75.87s 190.7s 185.9s 167.1s

Mapping time 346.7s 258.6s 313.2s 229.2s

Peak RSS 11.66GB 23.81GB 14.21GB 14.21GB

mappings 100000 100000 100000 100000

coverage t = 30bp - 99.99% 99.99% 14.72%

coverage t = 100bp - 100% 100% 44.96%

coverage t = 200bp - 100% 100% 73.61%

coverage t = 400bp - 100% 100% 96.14%

Table 3.4 Synthetic target, length , 33.11% singleton minimizers2 · 109

minimap2 hifimap hifimap
--save-mem

hifimap
--approx

Indexing time 136.4s 438.5s 407.1s 410.2s

Mapping time 371.2s 241.8s 300.5s 199.4s

Peak RSS 22.74GB 40.51GB 29.67GB 29.67GB

mappings 100000 100000 100000 100000

coverage t = 30bp - 99.96% 99.96% 9.13%

coverage t = 100bp - 99.99% 99.99% 29.32%

coverage t = 200bp - 100% 100% 52.52%

coverage t = 500bp - 100% 100% 91.23%

A low percentage of singleton minimizers combined with large sequence length

indicates highly repeating minimizers. As the number of repeating minimizers

increases, the size of minimap2’s list of minimizer matches that needs to be

22

chained increases. In contrast, the same list of matches has a constant upper

bound in hifimap, hence we can observe positive results.

Hifimap should outperform minimap2 when the reference sequence has highly

repeating minimizers. We benefit from the fact that minimizer repetition is mostly

correlated with sequence length, so we expect and observe great performance for

very large reference sequences which are of practical interest to us. Note that the

largest known genome, Paris japonica, contains about 150 billion base pairs, 50

times more than the human genome.

Our approximation method didn’t yield too satisfactory results, as its runtime is

only a constant time away from the classic hifimap algorithm runtime at the price of

accuracy that might be too high to be used in practice. It appears that as target

sequence length increases, the approximation accuracy decreases.

Table 3.5 Target sequence: E. coli, length , 98.10% singleton minimizers4. 6 · 106

Number of HiFi reads: 95514

minimap2 hifimap hifimap
--save-mem

hifimap
--approx

Indexing time 0.316s 0.611s 0.557s 0.561s

Mapping time 270.4s 169.2s 211.72s 128.99s

Peak RSS 1.02GB 0.3GB 0.28GB 0.28GB

mappings 98796 101526 101526 95514

coverage t = 30bp - 96.21% 96.21% 27.31%

coverage t = 100bp - 96.28% 96.28% 62.21%

coverage t = 200bp - 96.36% 96.36% 73.96%

coverage t = 500bp - 96.47% 96.47% 82.27%

We have to say we are pleasantly surprised with these results. It seems to go

against our intuition that a high percentage of singletons benefits minimap2. Since

this is a real dataset, it appears that hifimap adapts quite well to different read

lengths. Note that this test was conducted on a different machine than all previous

tests.

23

Conclusion

Algorithms need to keep up and adapt to the latest advancements in sequencing

technologies in order to improve bioinformatics data pipelines. HiFi reads have an

astounding accuracy greater than 99% and a narrow length distribution with the

maximal mean length of 25k base pairs. We developed a novel mapping

algorithm, hifimap, which takes advantage of these properties.

Hifimap partitions the reference sequence into logical overlapping regions,

identifies the most prominent regions by computing tight upper bounds of chain

lengths for each region and finds exact minimizer matches only on most

prominent regions which are then chained into mapping results. The idea is to

reduce the length on which finding matches and chaining is performed down to a

maximal constant length in order to improve runtime. Partitioning the reference

sequence into regions allowed us to employ the TFIDF method in order to filter

noisy minimizers and also to approximate mapping positions even without the

need for finding and chaining exact matches.

We have laid the theoretical foundation of the hifimap algorithm, discussed various

algorithm details and presented our implementation. Results show that hifimap

performs well on both small and large reference sequences while especially

excelling on very large sequences with highly repeating minimizers.

24

References

[1] Heng Li, Minimap2: pairwise alignment for nucleotide sequences,

Bioinformatics, Volume 34, Issue 18, 15 September 2018, Pages 3094–3100,

https://doi.org/10.1093/bioinformatics/bty191

[2] Heng Li, Minimap and miniasm: fast mapping and de novo assembly for noisy

long sequences, Bioinformatics, Volume 32, Issue 14, 15 July 2016, Pages

2103–2110, https://doi.org/10.1093/bioinformatics/btw152

[3] Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount, James A.

Yorke, Reducing storage requirements for biological sequence comparison,

Bioinformatics, Volume 20, Issue 18, 12 December 2004, Pages 3363–3369,

https://doi.org/10.1093/bioinformatics/bth408

[4] Robert Vaser, ram (2021, April) https://github.com/lbcb-sci/ram

25

https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1093/bioinformatics/bth408
https://github.com/lbcb-sci/ram

Summary

Title: Rapid Alignment of High-Fidelity Sequencing Data

Keywords: Mapping, Alignment, HiFi reads, PacBio, hifimap, minimap2

Summary: Mapping DNA reads to a reference sequence is a common problem in

bioinformatics and can be quite hard since sequences are often very large. High

Fidelity reads, being the latest advancement in the field, have an astounding

accuracy greater than 99% and a narrow length distribution with the maximal

mean length of 25k base pairs. In this paper we propose a novel mapping

algorithm optimized for HiFi reads, hifimap. We lay the theoretical foundations of

the hifimap algorithm, discuss various algorithm details and present our

implementation. Results show that hifimap performs well on both small and large

reference sequences and in many cases outperforms minimap2 which is

considered the industry standard.

26

Sažetak

Naslov: Brzo poravnanje visoko pouzdanih dugačkih očitanja

Ključne riječi: Mapiranje, Poravnanje, Hifi očitanja, PacBio, hifimap, minimap2

Sažetak: Poravnanje DNA očitanja na referentni genom jedan je od čestih

problema u bioinformatici i može biti vrlo težak jer genomi mogu biti vrlo veliki.

High Fidelity očitanja imaju zapanjujuću točnost iznad 99% i usku distribuciju

duljina sa maksimalnom srednjom vrijednost od oko 25kbp. U ovom radu

predstavljamo novi algoritam poravnanja optimiziran za HiFi očitanja, hifimap.

Započinjemo sa postavljanjem teoretske podloge algoritma hifimap, zatim

razmatramo razne algoritamske detalje i na kraju prezentiramo našu

implementaciju. Rezultati su pokazali da hifimap ostvaruje dobre rezultate za male

i velike referentne genome, a često i nadmašuje minimap2 koji je smatran

industrijskim standardom.

27

