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1. Introduction

RNA or Ribonucleic acid is a single-stranded molecule. It is known that cells contain

different forms of RNA - messenger RNA (mRNA), transfer RNA (tRNA), and ribo-

somal RNA (rRNA). Researches have shown that although RNA is a single-stranded

molecule it can form double-stranded structures. Also, single-stranded RNA can form

secondary structures so that the RNA molecule overlaps and thus forms hairpin loops.

This property can be of great importance, especially in the case of the ability of tRNA

to bind to the correct mRNA sequence during translation (Clancy ((2008))).

In order to quantify specific structures of the RNA molecule, different approaches

are used. One such approach is the modification of exposed nucleotides. The mod-

ification process is done artificially in the laboratory. After the modification process

and once the RNA structure is unfolded, it is necessary to observe characteristic pat-

terns of positions of modified nucleotides for each cluster of structures by looking at

its primary structure.

Third-generation sequencing technologies provide reads longer than previous tech-

nologies. Although this fact facilitates the analysis of RNA structures, there is an ad-

ditional disadvantage of this approach - the presence of a high error rate in fragments.

Modifying nucleotides increases error rate because existing methods for translation

of raw input signal to a sequence of nucleotides recognize only canonical nucleotides

(Technologies ((2020))).

This thesis presents methods for reducing the error rate in the data and methods for

detecting clusters of modified nucleotides. The error rate reduction was performed us-

ing the different approaches and procedures that using detailed analysis of data found

significant positions on the reads. Detection of clusters of modified nucleotides is per-

formed using various methods such as K-means, RSM algorithm, Non-negative matrix

factorization, and Graph spectral clustering. All implementations of these methods can

be found at the link.
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2. Overview

2.1. Third-generation sequencing

Sequencing is the process of determining the order of individual nucleic base - adenine,

cytosine, guanine, timid and uracil - within RNA or DNA chain. Sequencing results

are used to determine the genomic itself, the establishment of the related and evolu-

tion of species, determining new genes and their association of diseases, determining

the potential goals for medicines, and metagenomics - the research of the microbial

community directly from the environment (M. Šikić ((2013))).

In recent years, different genomic sequencing technologies have become revolu-

tionary in the field of mutation detection of genetic diseases. Oxford Nanopore Tech-

nologies released Nanopore sequencer that performs sequencing in real-time and car-

ries out sequencing by predicting sequences from electric current patterns knows as

“squiggle”, which are affected by the bases inside the Nanopore. Nanopore uses flow

cell to allow massively parallel sequencing and the flow cell is made of an electri-

cally resistant membrane that has thousands of tiny pores, each with a diameter of one

nanometer (hence the name) (A. Di Giorgio ((2019))).

Third-generation sequencing and mapping unlike second-generation technologies,

which produce reads a few hundred base-pairs (bp) long, generate over 10 000 bp

reads or map over 100 000 bp molecules. This fact has greatly improved the analysis

of genome structure (Lee et al. ((2016))).

Even so, third-generation sequencing contains a high rate of errors which may

further hamper the detection of groups of modified nucleotides. There are two main

reasons why is the error rate in the case of third-generation sequencing high. First,

the DNA or RNA passes through the pore very quickly so if the sequence contains ho-

mopolymers (more of the same nucleotides) it is hard to detect how many nucleotides

are there. Second, modifications make it more difficult. Modifications such as methy-

lations change the size of nucleotides and the electrical current so base callers in these

cases have difficulties recognizing nucleotides.
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2.2. Related work

Detection of clusters of modified nucleotides is a general problem in the field of bioin-

formatics. Current work in this area presents different approaches that still do not

provide fully satisfactory methods. In this thesis, three different approaches were stud-

ied in particular: RSM and ANN, DRACO and DREEM algorithms. Their approaches

are presented in the following sections. The work used in the development of these

algorithms served as inspiration for the methods used in this thesis described in the

Section 5.

2.2.1. RSM and ANN Algorithm

In the paper Detecting and phasing minor single-nucleotide variants from long-read

sequencing data (Feng et al. ((2021))) the work about detecting and phaseing minor

single-nucleotide variants or SNVs is presented. The method used for detecting SNVs

is also applicable to the problem of detecting RNA modifications. This method is based

on solving the main problem and that is to distinguish between real SNVs and sequenc-

ing errors. It is assumed that sequencing errors are independent and it is unlikely that

multiple sequencing errors occur together on the same read. On the other hand, it is

assumed that the occurrence of SNVs is dependent. For that reason, for detection of

SNVs, conditional substitution rate is used.

Figure 2.1: Encoding modifications on reads (Feng et al. ((2021)))

In the first step of the whole procedure, it is necessary to encode all modifications

on the reads (Figure 2.1). After that, the reads are represented by encoded substitutions

and the reference coverage interval of that read.
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The algorithm used for detection was named Random Subspace Maximization or

RSM algorithm. To detect real SNVs it is necessary to observe p different dependent

loci. Locus is the position on the reference where modification occurred. Enumerating

all combinations of p loci to get maximal conditional substitution rate is infeasible. So,

RSM is used to estimate the maximal conditional substitution rate.

The first step in the RSM algorithm is to measure the similarity between every two

reads. The similarity is defined as modified Jaccard index (equation 2.1).

Jaccard(Ri, Rj) =
|Si ∩ Sj|

|(Si ∪ Sj) ∩ [4max(bi, bj), 4min(ei, ej) + 3]|
(2.1)

In equation 2.1 Si represents a set of encoded substitutions, b is the start position

of the reads coverage interval and e is the end position of it.

After all similarities are calculated, the next step is to calculate w x m subspaces

(Cij - equation 2.2). w is user defined and represents number of similar reads, m is the

total nuber of reads.

Cij = Si ∩ Sj (2.2)

The next step is to estimate maximal conditional probability for substitution xk

from Cij using equations 2.3. And after that the detection of SNVs is over.

HCij
(xk) = max

{xg1,xg2,...xgp}⊂Cij

{P̂ r(Xk = xk|Xg1 = xg1, Xg2 = xg2, ..., Xgp = xgp)}

= max
xg1,xg2,...xgp

{ |{t|{xk, xg1, xg2, ..., xgp} ⊂ (St ∩ Cij)}|
|{t|{xg1, xg2, ..., xgp} ⊂ (St ∩ Cij), k ∈ [bt, et]}|

}

Ĥ(xk) = maxCij(ĤCij(xk))
(2.3)

Once the SNVs are detected the next step is clustering SNVs using the ANN al-

gorithm. ANN stands for Adaptiv Nearest Neighbours. Firstly, to reduce noise level,

only detected modifications for each read were retained as it is shown in equation 2.4 .

S̃i = Si ∩ {DetectedSNV s} (2.4)

The main idea of the ANN algorithm is that all loci should be homogeneous by

piling up the reads in each cluster. The homogeneous locus is the locus that satisfies

the following condition in equation 2.5.
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P̃r(Xk = xk) =
|{i|xk ∈ S̃i}|∑3

d=0 |{i|4k + d ∈ Si}|+ |{i|rik = tk}| ∈ [0, plim] ∪ [plim, 1]
(2.5)

After the condition is checked the next step is for a readi to sort q most similar

reads according to Jaccard index and kept discarding the most dissimilar one until all

loci covered by readi are homogenous or maximal coverage of the loci is smaller than

some threshold. Once all loci are homogenous, the consensus sequence is recorded

as a draft contig. And then Jaccard index of each read with all the draft contigs is

calculated, and the read is assigned to the contig with largest Jaccard index.

2.2.2. DREEM

DREEM algorithm is presented in paper Determination of RNA structural diversity and

its role in HIV-1 RNA splicing (Tomezsko et al. ((2020))). DREEM as a name comes

from the Detection of the RNA folding Ensembles using Expectation–Maximization.

As the name itself says, the main idea of this algorithm is the expectation-maximization

algorithm. In this case, RNA was modified with dimethyl sulfate (DMS). The func-

tion of DMS is to add methyl groups to the unpaired adenines and cytosines of RNA

molecules. During reverse transcription, using TGIRT-III, the presence of a methyl

adduct is read. Methyl adduct marks positions by incorporating random mutations

in the complementary (c)DNA. Each of the resulting reads is represented as a binary

readout of mutations and matches, which is the input for DREEM. The mutations that

are observed on a single DNA molecule actually correspond to the DMS-accessible

bases on the parent RNA molecule.

There are two main challenges in detecting heterogeneity: (1) DMS modification

rate is low (a base has a probability of 2-10% of being modified); (2) the DMS mod-

ification rate per base is sensitive to the local chemical environment (not all bases are

equally reactive to DMS). The DREEM algorithm groups reads from each structure

into distinct clusters. If two individual bases are DMS-reactive but never mutated on

an identical read it can be concluded that there are at least 2 groups. DREEM tries

to identify patterns of mutations on reads and clusters using the EM algorithm. The

modification rate per base for each cluster is determined by iteratively maximizing a

log-likelihood that is computed using a multivariate Bernoulli mixture model. As op-

posed to the algorithm for detecting SNVs (RSM algorithm), in this paper it is assumed

that the mutation probabilities are independent of each other.
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Concerning the problem of reads not covering the whole reference, the bit repre-

senting the base not covered by the read was set as . and the base with low quality

was set as ? . If the fraction of non-informative bits (‘.’, ‘?’ and N) in the bit vec-

tor is greater than info_thresh, the bit vector is removed. After the filtering, all the

non-informative bits are set to 0 in the remaining bit vectors.

K is the number of structures - clusters present in sample. The model is parametrizied

by: µ = { µ1 , ... , µk }. µk = ( µk1 , ... , µkD ) are the mutation probabilities of the

cluster k. π = { π1 , ... , πK } are the mixing proportions of the K clusters in which πk
quantifies the proportion of reads in cluster k.

The probability of a base being mutated in cluster k is

Pr(xni = 1|µk) = µki (2.6)

The probability of observing a read xn from cluster k is:

Pr(xni|µk) =
D∏
i=1

µxni
ki (1− µki)

1−xni (2.7)

Reads that contain mutations within three bases of each other are very rare - they

occur at a frequency close to the sequencing error rate. This is probably due to the

reverse transcriptase falling off the template when encountering adjacent methylations.

All rare reads containing mutations within three bases of each other are removed and

set S is calculated. This set contains all reads with allowable mutations.

The model parameters µ and π are randomly initialized. After the initialization

step EM algorithm is performed. The expectation and the maximization step are exe-

cuted in loop one after another until convergence of the log-likelihood.

In the expectation step two calculations are performed: (1) the responsibilities of

the clusters are computed - the reads are assigned to clusters; (2) the expected log-

likelihood of observing data X and latent variables Y ={Ynk} is computed.

In the maximization step of the algorithm, the model parameters are re-estimated

by maximizing the expected value of the likelihood. After that, the mixing proportion

of clusters is updated.

2.2.3. DRACO

DRACO algorithm is presented in paper Genome-scale deconvolution of RNA structure

ensembles (Morandi et al. ((2021))). DRACO is an abbreviation of Deconvolution of

Alternative RNA COnformations. The authors of the algorithm and paper based their
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work on the previously presented DREEM algorithm. In this case, RNA was modified

with dimethyl sulfate (DMS) with the same procedure that is described in the previous

section. Although based on the procedures of the DREEM algorithm, the DRACO

algorithm is actually quite different from the DREEM algorithm at its core and is

based on the use of graph spectral clustering and fuzzy clustering.

In the paper, firstly, the main limitations of the DREEM algorithm are listed: (1)

the maximum number of RNA conformations (groups) that can be searched for is user-

defined; (2) it can handle only experiments in which the sequencing reads cover the

entire length of the target RNA. In the case of DRACO algorithm there are also some

limitations: (1) it can also be applied to the analysis of short transcripts that can be

covered by a single sequencing read, or of smaller target regions in larger transcripts;

(2) the number of clusters is determined by eye inspection of the eigengap plot or by

cut-off to the magnitude of eigengaps; (3) sequencing reads are hard clustered by k-

means - one read can only be assigned to the one RNA conformation (group). The

authors assume that it is likely that certain bases are single stranded in more than one

conformation (group).

The whole algorithm has several steps. A graphical representation of these steps is

shown in Figure 2.2 .

In the first step of the algorithm, it is necessary to perform side windowing along

the transcript. The window size, in this case, is equal to 90% of the median read

with 5% increments. The second step is generating a mutation map using only reads

that cover the entire window. Mutated bases are represented as 1, and 0 otherwise.

By using this mutation map, in the third step, the graph is built. In the graph, each

vertex is a base of the transcript and edges are connecting two vertices. These edges

are weighted proportionally to the number of reads in which the two connected bases

have been observed to co-mutate. In step 4, from the adjacency matrix of an obtained

graph, the normalized Laplacian matrix is calculated. It is used for spectral clustering.

Then, the null model is derived by repeating the same procedure after shuffling the

mutations in the original mutation map. Analysis of the eigengaps allows identifying

the number of informative ones - the number of the RNA conformations (groups).

After the number of conformations is defined, in the next step, fuzzy clustering is

performed by using a custom graph cut approach. In the last step, consecutive windows

that show the compatible number of clusters are merged and then reads are re-assigned

to the respective clusters.
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Figure 2.2: Overview of the DRACO algorithm (Morandi et al. ((2021)))
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3. Dataset

3.1. Tetrhymena data

The first type of data used in this research is the tetrahymena ribozyme, a group I in-

tron from Tetrahymena. Genome Institute of Singapore obtained the data. Sequencing

of the data was performed with the Oxford Nanopore MinION third-generation se-

quencer. Modifying nucleotides was performed by Wan Yue, Ph.D., and Jong Ghut

Ashley Aw.

There were three types of the obtained data: unmodified reads, reads acquired by

sequencing slightly modified RNA sequences and reads acquired by sequencing quite

modified RNA sequences. These reads were the result of base calling given raw signals

with albacore v2.3.3. All raw signals are transformed into reads. The number of reads

per group is shown in the Table 3.1. The reference was RNA sequence that is 421 base

pair long.

unmodified slightly modified quite modified

20149 51764 9951

Table 3.1: Number of reads for Tetrahymena data

The whole preprocessing procedure including aligning reads to a reference, polish-

ing and then detection of modifications was done by Ivona Martinović as part of her

Bachelor Thesis (Martinović ((2020))).

3.2. Riboswitch data

Riboswitch data was also used in this work. A riboswitch is a regulatory segment

of an mRNA molecule. Riboregulation is the use of ribonucleic acid sequences en-
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coded within mRNA that directly affect the expression of genes encoded in the full

transcript. Riboswitches bind small molecules with high affinity and specificity, they

bind metabolites or metal ions as ligands and regulate mRNA expression by forming

alternative structures in response to this ligand binding. Riboswitches are most often

located in the 5’ untranslated region (5’ UTR - a stretch of RNA that is before the

translation start site) of the mRNA (Edwards and Batey ((2010))).

These data were also obtained by Wan Yue, Ph.D., and Jong Ghut Ashley Aw. The

data contained different riboswitches that are listed in the Table 3.2.

RIBOSWITCH

GUA Guanine

FMN Flavin mononucleotide

SAM S-Adenosyl methionine

TPP Thiamine pyrophosphate

MRPS21 Mitochondrial Ribosomal Protein S21

Table 3.2: Types of riboswitches in data

TPP data were used the most in the development, and in some cases, additional

verification was performed with MPRS21 and GUA data. There were two sets for

every kind of riboswitches. Two sets for TPP data were: TPP riboswitch with ligand

and without ligand. As already mentioned, the binding of the TPP molecule to mRNA

changes the RNA structure. For this reason, the main assumption was that there were

at least two structures in the merged data - one from the sample without ligand and one

from the sample with the ligand.

It is important to note that these data are not previously basecalled. To determine

whether the base was modified or not, the electrical current from nanopore sequencing

was used. Then, the matrix with rows representing the individual strands, and columns

representing the positions were generated. The length of all RNA individual strands in

TPP data was 635 positions, MPRS21 624 and GUA 642 positions.

3.3. Simulated data

The previous two sections describe the real data representing reads of the modified

RNA structures. The downside of this data is that the exact number of structures that

10



Figure 3.1: An example of one individual RNA strand in matrix

need to be detected is not known. For riboswitch data, there was an assumption that

there were two structures, but even that was an unreliable fact.

For this reason, it was necessary to generate simulated data on which the imple-

mented methods will be tested. When simulating the data, it has been tried to follow

as closely as possible that the simulated data are similar to those that can be obtained

in the real world.

Simulated data were created for TPP riboswitch data as behind Tetrahymena data.

Real references were used in the simulation. The simulated reads were the length of

the real references. Initially, the minimum and the maximum number of mutations per

read were initialized. The types of simulated reads are presented in Figure 3.2.

Figure 3.2: Graphical representation of simulated read types

For Tetrahymena data reads that could be divided into three clusters are generated,

more precisely, the expected number of structures was three. The minimum number of

mutations per read was 80 and the maximum number was 110. Different clusters had

mutations at different read positions. The first cluster was defined by mutations that

were at the start and end positions of the read. The second cluster contained reads that

had mutations only in the middle positions. The third cluster had mutations in every

11



20 or so positions of the read. About 2000 reads were created for each of the clusters.

Simulated data for the TPP riboswitch reference were created for 2 clusters. Ana-

lyzing the TPP data, it was concluded that these data were modified in a rather small

percentage. Therefore, both the minimum and the maximum number of mutations for

the simulated data were less than in the case of Tetrahymena data. The minimum num-

ber was 10, while the maximum number was 80. Three types of such simulated data

were generated. In the first type, one cluster had mutations only at starting and ending

positions, and the other only at the middle positions. In the second type, one cluster

also had modifications in the starting and ending positions, and the other every 20 or

so positions. The third type was a combination of clusters with modifications only in

the middle positions and with modifications every 20 or so positions.

12



4. Data analysis

In this thesis, most of the work was done with riboswitch data because there was an

assumption of the expected number of clusters. Before performing all the methods, it

was necessary to understand the data well.

When analyzing the real data, it was concluded that not all positions on the reads

are of equal importance. Certain positions indicate affiliation to one of the clusters.

As can be seen on Figure 4.1, there are positions where the number of modifications

is significantly higher. Slightly less than 40,000 reads were taken into account. The

largest number of modifications is at position 321 wherein almost every case a modifi-

cation occurs. On the other hand, there is a much larger number of positions where the

number of modifications is less than 100.

Figure 4.1: Modifications per positions on TPP data

Since it was concluded that TPP riboswitch data are particularly rare, several an-

alyzes were conducted to determine whether there are positions that can be cluster

representatives.

13



4.1. Cumulative sums

Analysis using cumulative sums was performed on TPP riboswitch data - TPP with

ligand and TPP without ligand. Firstly, a graph of cumulative sums by positions for

data with ligand and without ligand was plotted (Figure 4.2). The first point of the

graph represents the total number of modifications of all reads at position 1. The

second point represents the sum of the total number of modifications of all reads at

position 1 and the total number of modifications of all reads at position 2, and so on.

Figure 4.2: Cumulative sums for ligand and non ligand data

Since the plotted graph did not give much information, the read positions were

divided into overlapping windows of length 7. The cumulative sums were calculated

at the window level and the obtained results are shown in the Figure 4.3.

Figure 4.3: Cumulative sums per windows of length 7 for ligand and non ligand data
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It was then concluded that a good indicator would be the differences between the

ligand and nonligand data for each of the points shown in the previous graph. In addi-

tion, a null model was created consisting of reads whose modifications were perturbed

and the same procedure was performed with it - the differences of cumulative sums by

windows for ligand and nonligand data were subtracted. A comparison of the results

obtained for the real and perturbed data is shown in the Figure 4.4.

Figure 4.4: Comparison between differences for real data and for perturbed data

On the graph, the red line shows the data for the differences between the ligand

and non ligand real data. The green line shows the differences for the null model. The

top blue line shows the maximum value for null model results, the middle blue line

represents 0, while the bottom represents the minimum value for null model results.

From this graphical representation, it is easy to conclude that this data contains a

large amount of noise, which can further complicate the detection of clusters.

4.2. Detection Of Significant Positions

In the previous section, it was shown that the data that need to be clustered contain

a large amount of noise. In order to try to reduce the noise level in the data, the

15



implementation of a method that finds only significant positions on reads has been

attempted.

Chunks of 100 reads are taken. Read representations (read*) are obtained using

windowing. If the window of 10 positions in the original read contains at least one

modification, the label in read* is 1, otherwise is 0. For a better understanding, an

illustrative example of obtaining a read representation using windowing with a window

of size 10 is shown in Figure 4.5

Figure 4.5: Windowing: window length 10

Then, all positions of reads* are summed in one vector. From that obtained vector

chunk mean value is calculated. After that, chunk representations are constructed.

Every position in chunk representation was calculated as the difference between the

sum of that positions of all reads in the chunk and the chunk mean value. The whole

procedure is presented graphically in Figure 4.6.

Figure 4.6: The method for finding significant positions
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In the next step for every column of chunk representations (PB in Figure 4.6) box

plot is plotted. Example of box plots obtained for TPP data is shown in Figure 4.7.

The same procedure is repeated with simulated data and the box plots are shown in

Figure 4.8. As it can be seen in the figures, the distribution of box plots for real and

simulated data differs significantly which is an additional indicator of excessive noise

in the real data.

Figure 4.7: Box plots of columns of the chunk representations for the real data

A graphical representation of the box plots for the simulated data was used to detect

significant positions. In the Figure 4.9 interesting regions are rounded off. Interesting

regions differ from each other in the mean values of the datasets belonging to them.

The main idea is to find 10 significant positions. Accordingly, it is necessary to find 10

important regions and take representatives of these regions. The representative was the

median value of a particular region. Interesting regions were obtained by first calcu-

lating the median difference between the data from every two adjacent positions. The

9 biggest differences were the boundaries of the regions and the regions themselves

were constructed concerning them.

With the obtained representatives of the regions, clustering of reads was performed

using different methods.
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Figure 4.8: Box plots of columns of the chunk representations for one kind of the simulated

data

Figure 4.9: Box plots of columns of the chunk representations for one kind of the simulated

data with rounded interesting regions
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4.3. Windowing analysis

In order to further understand TPP data, additional analysis was conducted. The reads

are represented by overlapping windows of length 10 and the following graphs are

drawn:

– the average number of modifications in window for all reads (Figure 4.10)

– the maximum number of modifications in window for all reads (Figure 4.11)

– the number of reads with 3 or more modifications in particular window (Fig-

ure 4.12)

In this section, graphs are presented only for the case of the window of size 10.

The analysis was also performed for both windows of sizes 5 and 15, as well as for the

case of non-overlapping windows. Unfortunately, the whole analysis did not provide

the significant information needed to fully understand data distribution.

Figure 4.10: The average number of modifications in window for all reads
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Figure 4.11: The maximum number of modifications in window for all reads

Figure 4.12: The number of reads with 3 or more modifications in particular window
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5. Methods

5.1. K-means

K-means algorithm finds groups of data samples with the same variance. This algo-

rithm requires a predefined number of groups - K stands for the number of clusters. K-

means is a partition grouping since it results in solid groups - every example belongs

only to one group. The main idea of the algorithm is that each of the K groups has

its mean value representing the centroid and each sample belongs to the group whose

centroid is closest in Euclidean distance. Adding an example to a specific group can

cause the centroid to shift and the centroid needs to be recalculated. Therefore, this

algorithm is iterative in nature (Šnajder).

In this thesis, the implementation of the python sklearn library for K-means was

used (Pedregosa et al. ((2011))). In this implementation, data is shuffled and then K

points are randomly used as init centroids. After that, in every iteration, every sample

is allocated to the group with the nearest centroid. Then, centroids are recalculated in

order to minimize the inertia (a condition in equation 5.1). In equation 5.1 xi represents

data sample and µj represents centroid (Pedregosa et al. ((2011))).

n∑
i=0

min
µj∈C

(||xi − µj||2) (5.1)

The algorithm is executed iteratively until the stop condition is achieved - no cen-

troid change has occurred or the maximum number of iterations has been achieved.

The main disadvantage of the K-means algorithm is that it is necessary to know in

advance the number of expected groups. In many cases it is not possible to know this,

so various methods are used to determine the expected number of groups. In this case,

to detect the expected number of clusters the Elbow method was used.

The Elbow method consists of several steps. In the first, the result of the K-means

algorithm is performed for several different k. For each of k then the total inertia is

calculated. The calculated inertia is plotted on a graph. On Figure 5.1 is the example of
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a plotted graph. The expected number of groups is determined by the apparent number

in which the elbow is recognizable. In this case, it is 2.

Figure 5.1: Example of Elbow method results

The entire implementation of the K-means approach was previously achieved by

Ivona Matrinović as part of her Bachelor thesis. This implementation was additionally

improved and then used as a comparative result with the results of other implemented

methods (Martinović ((2020))).

5.2. Non-negative Matrix Factorization

Non-negative matrix factorization or NMF is an unsupervised algorithm that projects

data into lower dimensional spaces.

Figure 5.2: Non-negative matrix factorization

In this method matrix, V is factorized into two matricesW andH with the property

that all three matrices have no negative elements (Figure 5.2). Non-negativity enables
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easier inspection of matrices. NMF is an NP-hard problem and it is approximated

numerically.

In this thesis, NMF is used for its clustering property (Ding et al. ((2005))). It

clusters the columns of V . To get W and H the following steps are performed:

1. Matrix V represents similarity matrix which has n rows and n columns, and n

represents the number of reads. The similarity between reads is calculated using

Jaccard index and Edlib (Šošić and Šikić ((2017)))

2. Matrices W and H are randomly initialized. The number of columns of the

matrixW or the number of rows in matrixH is the same as the expected number

of clusters.

3. The values in matrices W and H are iteratively updated using the following

equations:

Hn+1
[i,j] ←−H

n
[i,j]

((W n)TV )[i,j]
((W n)TW nHn)[i,j]

(5.2)

W n+1
[i,j] ←−W

n
[i,j]

(V (Hn+1)T )[i,j]

(W nHn+1(Hn+1)T )[i,j]
(5.3)

4. Matrices W and H are updated until are stable.

NMF is performed using python sklearn libraries (Pedregosa et al. ((2011))). Once

matrices W and H are obtained, the clustering part is performed. Matrix H gives the

cluster membership values:

ifHkj >H ij∀i 6= k (5.4)

This equation 5.4 suggest that input data vj belongs to kth cluster. In this way, hard

clustering is performed (Figure 5.3).

This can make sense if the maximum value of one column is significantly higher

than the other membership values in the column. This was often not the case, so

several iterations of NMF are performed. In every iteration, NMF with reads that are

not clustered in the previous iteration is performed.

Iterations are performed until there is at least one read which is clustered in the

previous iteration (Figure 5.4). After the algorithm stops, hard clustering is performed

on the remaining reads. It is determined if the maximum value of one column signif-

icantly higher than others approximately by observing values obtained in the matrix
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Figure 5.3: Steps for clustering after NMF

Figure 5.4: Non-negative matrix factorization in iterations

H . Perhaps it is not the best approach, but it leaves room for improvement of the algo-

rithm. The thing that also can be improved and differently handle is the hard clustering

of remaining reads.

5.3. Kalman Filter

In order to reduce noise (sequencing errors) from data Kalman filter is used. Kalman

filter is an algorithm that provides estimates of some unknown variables given the

measurements observed over time and which contain statistical noise and other inac-

curacies. The positive side of the Kalman filter is that it has a simple form and requires

small computational power.

Kalman filter is the algorithm that iteratively calculates several measurements:

Kalman gain (KG), current estimate (ESTt) and error in the estimate (EEST ) accord-

ing to every data input. To calculate KG, EEST and error in data (EMEA) are needed
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(equation 5.5). If the error in the estimate is smaller than the error in the data, a bigger

accent is put on the estimate, otherwise more importance is put on the data. When

KG is close to the 1 it can be said that data is accurate and estimations are unstable,

and when KG is close to 0 estimations are stable and data is inaccurate (van Biezen

((2015))).

KG =
EEST

EEST + EMEA

, 0 <= KG <= 1 (5.5)

ESTt is recalculated as it is shown in equation 5.6. ESTt−1 is previous estimate

and ESTt is new recalculated estimate. MEA represents input data point. The recal-

culation of the current estimate depends on how much we can trust the estimate and

the data.

ESTt = ESTt−1 +KG[MEA− ESTt−1] (5.6)

In the first iteration, we use the original estimate. The positive side of the Kalman

filter is that the original estimate does not matter - for any random value Kalman filter

will very quickly zero in on the true value. To calculate the new error in the estimate,

the ESTt and the KG are used (equation 5.7).

EESt = [1−KG](EESTt−1) (5.7)

The data used in this work is not time-related so some preprocessing methods are

used (Figure 5.5). Inputs to the Kalman filter were chunks of reads. First, every read

was represented as a bit vector. While constructing bit vectors, for every read, every

20 positions as window are observed. If the window contains at least one modification

the label in the bit vector is 1, otherwise is 0. After that, chunks are constructed. Every

chunk contained 100 reads representations. The input is then created by summing up

the read representations per position.

The EMEA used in this case was calculated by making permutations of all reads

and separating the permutated reads in chunks of size 100. After that, sum of the reads

per position was calculated and additional vectors are obtained. Then the mean value

for every vector is calculated. The difference between the minimum and the maximum

mean value is represented by EMEA.

For the initial MEA randomly initialized vector of the same length as every other

input vector is used. Every position of that vector was a random number between 0

and 100. Initial EEST was set to the random number between 10 and 20.
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Figure 5.5: Example of construction method for constructing input data for Kalman filter

5.4. Graph Spectral Clustering

The main idea of Graph Spectral Clustering is to cluster the spectrum of unorganized

data into multiple groups according to data uniqueness. It uses the connectivity ap-

proach to clustering, wherein communities of data points - nodes that are connected or

very close to each other - are identified in the graph. Those nodes are then mapped to

a low-dimensional space. Graph Spectral Clustering uses information from eigenval-

ues (which represent spectrum) of i.e. Laplacian Matrix derived from the graph or the

dataset (Von Luxburg ((2007))).

In order to implement the Graph Spectral Clustering method, the significant posi-

tions obtained in the section 2.2.3 (Morandi et al. ((2021))) were used. Each read was

represented with 10 obtained significant positions. If any of the reads did not have a

modification on at least one of those 10 positions, it is not considered.

The adjacency matrix is calculated using equations from DRACO paper where

additional weighting parameter for base coverage is introduced:

w = {wi|wi =
coveragei

max(coverage)
∀ i index(bases)} (5.8)

Aij =
Data[i, :] · Data[j, :]

√
wi · wj

(5.9)

After the adjacency matrix is obtained, normalized Laplacian of the matrix is cal-

culated and then the eigenvectors and their associated eigenvalues are obtained. The
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normalized Laplacian of the matrix was obtained using the following equations:

D = diag(A) (5.10)

- whereA represents adjacency matrix

Lsym =D−
1
2 (D −A)D−

1
2 (5.11)

LsymV = λLsym (5.12)

In equation 5.12 λ represents eigenvector. In the case of the graph in which all

nodes are not connected to each other the number of clusters is equal to the multiplicity

of the second eigenvalue. This is not the case with data in this work so the number of

clusters is not possible to read from eigenvalues. According to DRACO paper, it is

possible to define vector of eigengaps (λgap). Eigengap represents difference between

two adjacency eigenvalues (equation 5.13).

λgap = {λi − λi−1∀λi ∈ λ2, λ3, ..., λn} (5.13)

In the DRACO paper (Morandi et al. ((2021))) they used this vector to estimate the

number of clusters by comparing the eigengapvector obtained from the real data and

the eigengapvector obtained from the null model. The whole procedure of obtaining

the number of clusters and the clustering itself presented in the DRACO paper is quite

complicated and is omitted in the context of work in this thesis.

Further procedures were performed with the assumption that the expected number

of clusters for TPP data is 2. Once the adjacency matrix was obtained and its cor-

responding Laplacian was computed, clustering was performed using python sklearn

libraries (Pedregosa et al. ((2011))). Clustering is performed using K-means on eigen-

vectors whose belonging eigenvalues are nonzero.

For additional analysis, eigenvectors were plotted and eigengaps were calculated.

The assumption is that the expected number of clusters is the number of eigenvalues

before the largest eigengap. This analysis further verified the existence of at least 2

expected clusters.
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6. Results and discussion

Measurements used for results (Šnajder):

1. Accuracy:

Acc =
TP + TN

TP + TN + FP + FN
(6.1)

where TP is the number of true positives, TN is the number of true negatives,

FP is the number of false positives and FN of false negatives.

2. F1 score:

F1 = 2 · precision · recall
precision+ recall

=
TP

TP + 1
2
(FP + FN)

(6.2)

where precision is defined as the number of true positives over the number of

true positives plus the number of false positives and recall is defined as the

number of true positives over the number of true positives plus the number of

false negatives.

3. Rand index:

R =
a+ b(
n
2

) (6.3)

where a stands for number of equally marked pairs in the same groups (true

positives), and b stands for number of different pairs marked in different groups

(true negatives). In the denominator is the total number of pairs.

6.1. K-means and Non-negative Matrix Factorization

clustering

Ordinary K-means (section 5.1) and NMF (section 5.2) were used for clustering Tetrahy-

mena data (section 3.1) and also TPP riboswitch data (section 3.2). The approximate

number of clusters is not known for Tetrahymena data. The expected number of clus-

ters was obtained using the Elbow method. K-means clustering results are presented
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using the PCA method. Accordingly, it was not even known which read belonged to

which cluster. To be able to carry out the evaluation, the results obtained for these two

methods were compared. The methods are the first tested on artificially created data

(section 3.3).

6.1.1. Results for simulated data

Simulated data for testing these two methods consisted of 3 clusters and each cluster

was one of the types shown in the section 3.3. In the Figure 6.1 results of Elbow

method for simulated data are presented.

Figure 6.1: Elbow method for the simulated data for testing K-means and NMF

Noticeable elbow is at number 3 which suggests that the expected number of clus-

ters for this data is 3.

In Figure 6.2 K-means clustering is visualized using PCA.

The Table 6.1 shows the obtained values for the measure of Rand index.

Rand index

K-means NMF

1.0 0.9519

Table 6.1: Rand indexes for simulated data
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Figure 6.2: K-means clustering on simulated data

6.1.2. Results for Tetrahymena data

For Tetrahymena data Elbow method is performed and results are plotted on Figure 6.3.

Figure 6.3: Elbow method for the Tetrahymena data

Although the largest elbow can be seen in number 2 due to previous analyzes car-

ried out by Ivona Martinović, it is decided to assume that the data contains 3 clusters.

Visualized K-means clustering is shown in Figure 6.4.

In order to compare the results obtained by the K-means and the NMF method, the

Rand index is calculated between the results obtained by the K-means method and the

results obtained by the NMF method. In this case, Rand index was 0.7401.

In order to better analyze and compare the results, Venn’s diagrams (Figure 6.5)

show overlapping clusters obtained by these two methods.
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Figure 6.4: K-means clustering on Tetrahymena data

Figure 6.5: Venn’s diagrams for 3 clusters obtained using K-means and NMF for Tetrahymena

data

6.1.3. Results for TPP riboswitch data

Although TPP data is going with the assumption that the expected cluster number is 2

and that one of them includes ligand reads, and in other nonligand reads, the performed

procedure was identical to the one that was performed on Tetrahymena data.

The results of the Elbow method for TPP data are shown in Figure 6.6.

Although the larger elbow can be observed in the area of numbers 5 and 7, the

further analysis continued with the assumption that there are 2 clusters in the data. The

results obtained with K-means for k=2 are shown in Figure 6.7.
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Figure 6.6: Elbow method for the TPP riboswitch data

Figure 6.7: K-means clustering on TPP riboswitch data
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The Table 6.2 shows the obtained values for the measure of Rand index for TPP

riboswitch data.

Rand index

K-means NMF

0.5005 0.7192

Table 6.2: Rand indexes for TPP riboswitch data

Overlapping clusters obtained by the K-means method and the NMF method are

shown by Venn’s diagrams on Figure 6.8. The Rand index obtained by comparing the

results obtained by the K-means method and the NMF method was 0.5323.

Figure 6.8: Venn’s diagrams for 2 clusters obtained using K-means and NMF for TPP ri-

boswitch data

6.1.4. Results for MPRS21 riboswitch data

The same procedure as with TPP data is tested also with MPRS_21 data.

The results of Elbow method for TPP data are shown in Figure 6.9.

The elbow is noticeable at positions 4, 6 and 8, but due to the assumption for

riboswitch data, clustering was performed with 2 clusters.
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Figure 6.9: Elbow method for the MPRS_21 riboswitch data

Figure 6.10: K-means clustering on MPRS_21 riboswitch data
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The Table 6.3 shows the obtained values for the measure of Rand index for TPP

riboswitch data.

Rand index

K-means NMF

0.5454 0.8102

Table 6.3: Rand indexes for TPP riboswitch data

Overlapping clusters obtained by the K-means method and the NMF method are

shown by Venn’s diagrams on Figure 6.11. The Rand index obtained by comparing the

results obtained by the K-means method and the NMF method was 0.5067.

Figure 6.11: Venn’s diagrams for 2 clusters obtained using K-means and NMF for MPRS_21

riboswitch data

6.1.5. Discussion

In the case of simulated data by both methods, quite high results were achieved. Data

from simulated sets are easily separable. This test shows that on a simple data without

a lot of noise these methods work. According to the obtained results, K-means is a bit

more successful, but both results are satisfactory.

In the case of Tetrahymena data, the biggest problem is that there is no assumption

about the number of clusters or how the operation of these two methods on these data

could be verified. In her work, Ivona Martinović, using different methods, came to the

conclusion that 3 clusters are expected. Such an assumption was used in this work.

Venn’s diagrams (Figure 6.5) show that there is no significant match between the

results of the two methods. From this, it can be concluded that data clustering is

different for these two methods. As we are not able to validate the methods over this
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data, we cannot even know which method to trust more and which to consider more

successful.

In the case of riboswitch data, the assumption that there are two structures, i.e. two

clusters, was used. If the graphs obtained by Elbow methods (Figures 6.7 and 6.10)

are looked at it is still not 2 clusters. But if the results in the tables 6.2 and 6.3 are

looked at it can be seen that the results for the NMF method are significantly better.

The Elbow method used K-means to determine the expected number of clusters, which

is probably why the result of clustering for K-means for 2 clusters is much lower, while

NMF manages to successfully perform clustering for 2 clusters.

Although the results for clustering using the NMF method are significantly and

enviably higher than the others, it is not entirely accurate to say that this is a successful

method. Namely, when performing iterations in which one factorization is performed

each time, it is assumed that the first row of the matrix H is always cluster 1, and the

second row is always cluster 2. Such an assumption is not correct because the centroids

of such clusters are deformed. It is assumed that there is a way in which this method

could be modified so that the centroids of the cluster still have a spherical shape. In

the context of this work, this has not been done and it has not been explained why this

method gives good results without it.

6.2. Kalman Filter

Kalman Filter is used in order to reduce noise in TPP riboswitch data. Three different

datasets are used. One were reads modified with ligad, one without ligand and the third

was the set of connected ligand and non ligand reads.

6.2.1. Results

In Table 6.4 the outputs from Kalman filter are shown. Construction of inputs in

Kalman filter are explained in Section 5.3.
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Table 6.4: Kalman filtering - initial values and results

Initial value Result

10 0.1001

12 3.5642

8 6.8096

13 5.0636

8 11.6298

13 11.8077

10 9.4393

5 6.8829

10 5.3408

10 5.9359

11 12.7406

13 12.6774

13 8.7665

7 5.0928

8 6.2929

10 15.6743

11 22.6296

8 10.4172

15 11.3746

9 14.5442

8 7.9481

8 7.8744

10 5.7619

5 10.2363

8 9.3358

7 11.0714

9 5.8175

8 12.393

9 16.2656

8 16.4245

13 15.429

11 14.1602

Initial value Result

5 25.4211

9 10.1102

15 11.0548

9 15.6403

11 2.8509

6 10.8884

4 11.3318

8 3.6274

10 7.0433

11 4.5781

13 7.7919

7 6.6345

11 20.7732

11 8.8335

5 10.8751

12 4.0543

12 4.0617

8 8.8441

13 9.6924

4 14.9539

9 10.2213

9 7.9093

16 14.4633

11 9.5799

12 8.0328

11 5.7045

13 8.2812

15 8.7909

13 8.1776

11 3.5099

9 1.6169

7 1.1818
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Figure 6.12: Output signals from Kalman filter for TPP data

6.2.2. Discussion

It was expected that Kalman filter will give output signal that was cleared of noise.

Although the results in Table 6.4 suggest that the change of the signal really exist, on

the Figure 6.12 can be seen that output signals for three different datasets (data with

ligand, data without ligand and connected data) are the same. This fact shows that

the Kalman filter has indeed made some changes, but it may be too simple method to

reduce such noise that is present in this data. The assumption is that the noise in this

data does not have any distribution.

6.3. Detection Of Significant Positions

The detection of significant positions is performed for four different simulated datasets

(presented in Table 6.5) and for three different riboswitch datasets (TPP, MPRS21 and

GUA). The method for obtaining significant positions is presented in Section 4.2.

Number of modifs per read Modifs C1 Modifs C2

Dataset 1 10 - 80 beginning and end every 20 bases

Dataset 2 10 - 80 beginning and end middle

Dataset 3 10 - 40 beginning and end every 20 bases

Dataset 4 10 - 40 beginning and end middle

Table 6.5: Types of simulated datasets for detecting significant positions on reads
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6.3.1. Results for simulated datasets

Obtained positions:

1. Dataset 1 - Figure 6.13

Positions: [4, 9, 30, 52, 54, 57, 60, 62, 63, 64]

Figure 6.13: Simulated dataset 1 - significant positions

2. Dataset 2 - Figure 6.14

Positions: [2, 4, 15, 28, 36, 42, 51, 60, 62, 64]

Figure 6.14: Simulated dataset 2 - significant positions

3. Dataset 3 - Figure 6.15

Positions: [1, 3, 4, 20, 41, 53, 60, 61, 62, 64]
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Figure 6.15: Simulated dataset 3 - significant positions

4. Dataset 4 - Figure 6.16

Positions: [11, 23, 28, 32, 34, 36, 47, 60, 62, 64]

Figure 6.16: Simulated dataset 4 - significant positions

6.3.2. Results for riboswitch datasets

Obtained positions:

1. TPP data - Figure 6.17

Positions: [8, 17, 23, 30, 33, 35, 41, 45, 54, 64]

2. MPRS_21 data - Figure 6.18

Positions: [1, 7, 14, 17, 19, 23, 30, 34, 49, 63]

3. GUA data - Figure 6.19

Positions: [2, 5, 9, 14, 29, 44, 50, 56, 60, 65]
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Figure 6.17: TPP dataset - significant positions

Figure 6.18: MPRS_21 dataset - significant positions

Figure 6.19: GUA dataset - significant positions

6.3.3. Discussion

The main conclusion after obtaining significant positions for simulated and real data

is that data distribution between these two kinds of datasets is significantly different.

Differences between positions mean values are higher for simulated data and groups

of positions are easier to identify from their positions box plots.

There is still place for improvement for the method of obtaining significant posi-

tions. Taking only one value for groups that have many elements can cause the omis-
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sion of a position that may be important for clustering. Improving this step is left for

future work.

6.4. Graph Spectral Clustering

Graph Spectral Clustering was performed for data for which significant positions were

obtained in the previous chapter. Each read of each of these datasets is represented

only by these positions. Explanations for the simulated datasets can be found in the

Table 6.5.

6.4.1. Results for simulated data

Figure 6.20: Eigenvalues for Dataset 1 Figure 6.21: Eigenvalues for Dataset 2

Figure 6.22: Eigenvalues for Dataset 3 Figure 6.23: Eigenvalues for Dataset 4

Accuracy F1 score Rand index

Dataset 1 0.96 0.97 0.93

Dataset 2 0.99 0.99 0.99
Dataset 3 0.96 0.96 0.93

Dataset 4 0.99 0.99 0.97

Table 6.6: Graph spectral clustering performance on simulated data
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6.4.2. Results for riboswitch data

Figure 6.24: Eigenvalues for TPP Figure 6.25: Eigenvalues for MPRS_21

Figure 6.26: Eigenvalues for GUA

Accuracy F1 score Rand index

TPP 0.54 0.62 0.5

MPRS_21 0.57 0.26 0.51
GUA 0.51 0.14 0.5

Table 6.7: Graph spectral clustering performance on simulated data

6.4.3. Discussion

In the graphs (Figures 6.20, 6.21, 6.22 and 6.23) showing the eigenvalues for the sim-

ulated data, it can be seen that for Dataset 1 and Dataset 2 the largest eigengaps are

between the first and second eigenvalue. In the case of Dataset 3 and Dataset 4, the

largest eigengaps are between the third and fourth eigenvalue. The assumption of the

existence of 2 clusters is confirmed for Dataset 1 and Dataset 2, while for other sets it

is not. Despite that, clustering with 2 clusters gave good results (Table 6.7).

If the graphs for riboswitch data are looked at (Figures 6.24, 6.25 and 6.26), in TPP

data the largest eigengap is between the first and second eigenvalue which confirms
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the existence of 2 clusters. For MPRS_21 data, the largest eigengap is between the

third and fourth, and for GUA between the second and third eigenvalue. This does

not confirm the assumption of the existence of only 2 clusters. Also, if the results

in Table 6.7 are looked at, it can be concluded that clustering with 2 clusters is not

successful.

This implementation of this method does not give good results. There is a possi-

bility that the method itself needs to be modified, but it is also assumed that a large

amount of noise in riboswitch data plays a major role in the failure.

6.5. K-means With Significant Positions

The reads represented by significant positions were also clustered using K-means. The

same datasets as in the previous section were used.

6.5.1. Results for simulated data

Figure 6.27: Elbow method for Dataset 1 Figure 6.28: Elbow method for Dataset 2

Figure 6.29: Elbow method for Dataset 3 Figure 6.30: Elbow method for Dataset 4
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Figure 6.31: PCA for Dataset 1 Figure 6.32: PCA for Dataset 2

Figure 6.33: PCA for Dataset 3 Figure 6.34: PCA for Dataset 4

Accuracy F1 score Rand index

Dataset 1 0.99 0.99 0.99

Dataset 2 0.99 0.99 0.99

Dataset 3 1.0 1.0 1.0
Dataset 4 1.0 1.0 1.0

Table 6.8: K-means performance on simulated data represented with significant positions
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6.5.2. Results for riboswitch data

Figure 6.35: Elbow method for TPP Figure 6.36: Elbow method for MPRS_21

Figure 6.37: Elbow method for GUA

Figure 6.38: PCA for TPP Figure 6.39: PCA for MPRS_21

Figure 6.40: PCA for GUA
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Accuracy F1 score Rand index

TPP 0.5 0.57 0.5

MPRS_21 0.56 0.67 0.51
GUA 0.51 0.61 0.5

Table 6.9: K-means performance on riboswitch data represented with significant positions

6.5.3. Discussion

Representations of reads with the significant positions were supposed to remove noise

from real data and thus improve clustering. As expected, this method gives very good

results on simulated datasets (Table 6.9). On the other hand, if we compare Table 6.9

and Tables 6.2 and 6.3 it can be concluded that the success of clustering with K-means

is not improved by introducing such representations.

The results of clustering in both cases are similar, which suggests that the approach

with such representations can replace the basic one and thus speed up the clustering

process, but it can also be concluded that this approach did not remove enough noise

to make it easier for K-means to divide clusters.
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7. Conclusion

The main goal of this thesis was to cluster modified nucleotides. Numerous methods

have been tested and existing methods for solving this problem has been investigated.

In order to validate those methods, it is necessary to have good and realistic data.

The main problem with this task is the data. Sequencing RNA structures with third-

generation sequencers still generates a large amount of error that introduces noise into

the data. This poses an additional challenge, and that is the distinction between the

actual modification and the sequencing error. In this thesis, the focus was on clustering

modifications, assuming that modifications were successfully detected and separated

from errors. Additional analysis of these data showed that noise in the data was still

present. This is why clustering methods should be robust enough so that noise cannot

affect the final outcome or the data must be in some way further cleared of noise.

The methods implemented in this thesis have proven successful on simulated datasets.

From this, it can be concluded that for easily separable data that do not contain a large

amount of noise, such approaches work. On the other hand, the results for real datasets

were not so good. The best result (rand index 0.72 and 0.81) was achieved by a method

that uses non-negative matrix factorization in iterations, but the approach used by this

method is not completely correct and requires additional improvement. Therefore, it

cannot be said with certainty that these results are really good results. Other methods,

even after attempts to remove noise in the data, gave poor results. Whether this is re-

ally bad data or the approaches are too simple or in some way wrong, it is difficult to

say with certainty.

Improving this type of clustering requires additional data analysis and a full under-

standing of modification detection methods. The detection step can play a key role in

the clustering itself, and such an approach has not been used in this work. Also, some

kind of robust and complex method could further identify the noise in the data, which

methods used in this work have failed.

In conclusion, one should be aware that each clustering method has its own pecu-

liarities and it is difficult to achieve global clustering for all types of modifications.
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Detection of Modified Nucleotide Clusters in Nanopore Sequenced RNA Reads

Abstract

The main goal of this thesis was to detect groups of modified nucleotides in RNA

reads obtained by third generation sequencers. Reads obtained by third-generation

sequencers often contain a large amount of noise. In this work, detailed analyzes

of the data were performed in order to try to remove the noise and so that the data

could be better understood. The related work achieved in the area of this problem

is shown. Clustering was performed by various methods such as K-means, Graph

Spectral Clustering and Non-negative matrix factorization. Clustering methods were

tested on simulated datasets as well as on real datasets. The results are presented in

tables and graphs. The source code of the implemented methods can be found at:

Keywords: RNA modifications, clustering methods, data analysis, nanopore reads

Detekcija grupa modificiranih nukleotida u očitanjima RNA dobivenih metodom
nanopora

Sažetak

Glavni cilj ovog diplomskog rada bio je detektiranje grupa modificiranih nuk-

leotida u RNA očitanjima dobivenim sekvencerima treće generacije. Očitanja do-

bivena sekvencerima treće generacije često sadržavaju veliku količinu šuma. U ovom

radu provedene su detaljne analize podataka kako bi se šum pokušao ukloniti te kako

bi se podatci mogli bolje razumjeti. Prikazan je trenutni postignuti rad u području

ovog problema. Provedeno je grupiranje raznim metodama kao što su K-means, Graph

Spectral Clustering te Non-negative matrix factorization. Metode grupiranja testirane

su na simuliranim skupovima podataka kao i na stvarnim skupovima podataka. Rezul-

tati su prikazani tablično i grafički. Izvorni kod implementiranih metoda nalazi se na:

Ključne riječi: RNA modifikacije, metode grupiranja, analiza podataka, nanopor oči-

tanja




