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1. Introduction

Understanding both protein and RNA structures greatly facilitates understanding of

their functionality. Knowing protein structure is crucial for our knowledge of how

they serve as enzymes, bind to other proteins in signal cascades, are misregulated

in diseases and are targeted by antibodies and small molecules in therapies. RNAs

also fold into simple and complex structures to regulate every step of their lifecycle,

including transcription, translation, decay and RNA transport.

The ‘protein folding problem’ (Dill et al., 2008) has been an open research problem

for more than 50 years (Anfinsen, 1973). As a result of enormous experimental effort,

there are currently more than 150000 high-resolution protein structures in the Protein

Data Bank (PDB) (Bank, 1971) - a database for the three-dimensional structural data

of large biological molecules, such as proteins and nucleic acids. Even if the number of

protein structures may seem big, it is nothing in comparison to the billions of known

protein sequences. For RNA there exist only about 5000 structures in PDB, which

makes learning RNA structures using AI significantly more challenging.

One of the most significant scientific discoveries in 2021 has been AlphaFold2

(Jumper et al., 2021) method for the determination of protein 3D structures developed

by DeepMind. This model takes protein sequence as input and outputs the 3D structure

of this protein. The 3D structure refers to the three-dimensional coordinates of atoms

in an amino acid-chain molecule.

While several AI-based RNA prediction programs including MXFold2 (Sato et al.,

2021), SPOT-RNA (Singh et al., 2019) have been developed to varying success, they

mostly predict RNA secondary and not tertiary structures (explained in Section 2.1).

Recently, the first 3D RNA structure prediction with promising results was developed,

called DeepFoldRNA (Pearce et al., 2022).

The main problem with predicting structures for sequences for which experimen-

tally determined structure doesn’t exist is how to validate the obtained result. There

are worldwide experiments, such as Critical Assessment of protein Structure Predic-

tion (CASP) (Moult et al., 1995) and RNA-Puzzles blind RNA structure prediction
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challenges (Miao and Westhof, 2017), which give an opportunity to objectively test

structure prediction methods in a double-blinded fashion (neither predictors nor or-

ganisers and assessors know the structures before the evaluation). The structures that

competitors try to solve are usually soon-to-be experimentally solved or just solved

and are kept on hold by PDB. Even though this could be used as a type of evaluation,

there are not many structures in these experiments, and CASP takes place every two

years since 1994, while RNA-Puzzles have had only four rounds since 2012.

Since determining RNA structures is more challenging, a recent discovery that it is

possible to predict the root mean square deviation (RMSD) from a predicted structure

to a natural with a method called ARES (Atomic Rotationally Equivariant Scorer)

(Townshend et al., 2021), greatly facilitates the evaluation of prediction models. It

could also enable selecting the best structures according to ARES and couple them

with the starting set of structures to train a new model which could lead to even better

prediction models.

ARES was trained using only 18 RNA molecules for which experimentally deter-

mined structures were published between 1994 and 2006. As ARES learns entirely

from atomic structure, using no other information such as related RNA or protein se-

quences, and it makes no assumptions about what structural features might be impor-

tant, the aim of this thesis is to investigate to which extent information from the vast

pool of protein structure data can be used to improve the scoring of RNA molecules.

The remainder of this thesis is structured as follows: Chapter 2 introduces the

datasets used in this thesis, then in Chapter 3 there is a description of the model, after

which it moves on with results in Chapter 4 and discussion in Chapter 5, and concludes

with Chapter 6.
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2. Data Summary

2.1. Structure types

Term primary structure refers to the sequence of amino acids or nucleotides. Secondary

structure for proteins is a term for local sub-structures on the polypeptide backbone

chain and the secondary structures are defined by hydrogen bonds between the main-

chain peptide groups. There are two main types: the α-helix and the β-sheets. RNA

secondary structure consists of nucleotides which are paired or unpaired - although

RNA is a single-stranded molecule it can fold over and form hairpin loops. Tertiary

protein structure is a three-dimensional structure created by a single polypeptide chain,

while quaternary structure consists of two or more individual polypeptide chains that

function together as a unit called a multimer. RNA or nucleic acid tertiary structure is

a three-dimensional shape of a nucleic acid polymer, and quaternary structure refers

to the interactions between separate nucleic acid molecules, or between nucleic acid

molecules and proteins. In this thesis, the term structure will be used for the tertiary

structure if it is not stated otherwise, both for proteins and for RNAs. Figure 2.1.A

shows protein primary, secondary, tertiary and quarterly structures and figure 2.1.B

shows RNA primary, secondary and tertiary structures.
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Figure 2.1: Structure types. A, protein structure types. B, RNA structure types (CNX).

2.2. Data used for training ARES

For training ARES, they used 18 RNA molecules with known structures. These struc-

tures are shown in figure 2.2. For those 18 sequences, they generated 1000 structures

of each RNA using Rosetta FARFAR2 (Watkins et al., 2020) sampling method. They

used 14000 generated structures for training and 4000 for validation. PDB IDs of se-

quences whose structures were used for validation are bolded in the table 2.1. This

table also shows the lengths of these RNAs. These RNAs are short, the minimal length

is 17 nucleic acids and the maximal is 46. The median of lengths is 26, while the mean

is 26.944 nucleic acids and the standard deviation is 7.268. Every generated structure

has its RMSD score, which is explained more thoroughly in the next section and in

equation 2.1, and the distribution of RMSD scores per RNA is shown in figure 2.3.
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Figure 2.2: RNAs used for training from (Townshend et al., 2021)

RNA PDB ID length RNA PDB ID length RNA PDB ID length

157D 24 1KD5 22 1XJR 46

1A4D 41 1KKA 17 255D 24

1CSL 28 1L2X 27 283D 24

1DQF 19 1MHK 32 28SP 28

1ESY 19 1Q9A 27 2A43 26

1I9X 26 1QWA 21 2F88 34

Table 2.1: Lengths of RNAs used for training
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Figure 2.3: RMSD distribution per RNA used for training

2.3. Training and validation data

In the PDB every molecular model has a unique identification code (ID) consisting of

four alphanumeric characters (the first one is always a number in the range 1-9). Pro-

tein chains that have as different structures as possible were chosen for the training.

The results of the weekly clustering of protein sequences in the PDB by MMseqs2

at 70% sequence identity were used, downloaded from here. These files use polymer

entity identifiers, instead of chain identifiers. A polymer entity can contain more than

one chain, but all of the chains have the same structure and are only positioned some-

where else in space. The entity identifier consists of six characters, the first four are

molecular ID, followed by an underscore and a number which is the entity identifier.

In total 50 protein chains were chosen and used, every chain from a different clus-

ter. After choosing protein chains, the dataset was created. As the structures from the

PDB are correct and their RMSD is 0, different structures for the same protein chains

had to be generated. For generating protein structures Rosetta AbinitioRelax applica-

tion (Raman et al., 2009; Simons et al., 1999; Bonneau et al., 2001) was used. This

application predicts the 3-dimensional structure of a protein using its amino acid se-

quence. It creates structures which are both close and distant to the native structure.

Both amino acid sequence and nucleotide sequence are written in a FASTA format.

Besides amino acid sequence, the application takes as input fragment files - 3mers and

9mers.
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Structural fragments are short segments of the peptide backbone, typically from 5

to 15 residues long, and do not include the side chains. If modelled directly, every pro-

tein can create an exponential number of states. In order to reduce the conformational

space, fragments are used. Fragments were created, or rather picked, using the Rosetta

fragment picker application (Gront et al., 2011). There are three stages in the fragment

picking process: first is preparation (reading input files - FASTA file, additional files

describing secondary structure which are generated with helper modules, etc), then

actual fragment picking when the fragment candidates are pushed into a collector and

final step is a selection when the final fragment set is prepared based on the candidates.

Rosetta AbinitioRelax application needs 3mers and 9mers, therefore these fragments

needed to be created. Fragment types 3mers and 9mers means that there will be blocks

of 3, or 9, consecutive amino acids in every fragment. Fragment data line consists of

PDB ID of the fragment origin, chain ID for the origin PDB, PDB residue number

for the origin PDB, amino acid identity in the origin PDB, secondary structure for the

origin PDB, 3D coordinates of the Cα atom, and ψ, ϕ and ω angles.

Rosetta AbinitioRelax application then generates a stated number of structures,

which in our case was 1000 for every protein chain. An optional input file is a PDB

format file that the application uses for calculating the RMSD score.

RMSD(v,w) =

√√√√ 1

n

n∑
i=1

||vi − wi||2

=

√√√√ 1

n

n∑
i=1

((vix − wix)2 + (viy − wiy)2 + (viz − wiz)2)

(2.1)

Root mean square deviation of atomic coordinates is calculated using the formula

2.1 where n is the number of atoms and vectors v and w are sets of n 3D coordinates,

one for the predicted structure, one for the true structure. The score can be calcu-

lated for the backbone heavy atoms C, N, O, and Cα or sometimes just the Cα atom.

Rosetta AbinitioRelax calculates Cα RMSD. The score itself is expressed in length

units, which in molecular biology is the Ångström (Å) which is equal to 10-10 m. To

compare atom coordinates, the structures first have to be aligned. A structural align-

ment is a form of sequence alignment based on a comparison of shapes and it attempts

to establish equivalences in three-dimensional shapes of structures.

Programs for visualising structures can also be used for aligning the structures and

calculating the RMSD score. One such program is PyMOL. To get Cα RMSD score,
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alignment with only Cα atoms must be done and the score from cycle 0 is the desired

one.

In figure 2.4 there is protein chain 1N36H, the original structure in green and one of

the generated structures in purple. They were aligned and their RMSD score is 9.926.

Figure 2.4: Protein chain 1N36H original and generated aligned in PyMOL

Chosen protein chains can be found in table 2.2. It lists all of the chosen protein

chains with their PDB ID, entity ID, chain label, length and ID of the cluster from

which they are. The selection was limited to proteins with lengths between 70 and 350

amino acids because of the complexity of longer proteins and the time and resources

needed for generating structures. For the chosen proteins, the minimal length found

is 76 amino acids and the maximal is 324, the median of lengths is 140 amino acids,

the mean is 163.3 and the standard deviation is 66.959. PDB IDs of sequences whose

structures were used for validation are in bold.
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Cluster PDB ID Entity Chain Length

0 7S0E 2 H 223

1 4KQ4 1 L 214

2 3TLR 1 A 100

3 7KKL 2 B 118

4 6M2K 3 A 274

5 3P44 1 A 257

6 1GHL 1 A 130

7 4QCI 1 A 206

8 4M8Y 1 A 100

9 1N36 12 L 124

10 7OJX 3 C 76

11 3A7X 1 A 223

12 7CBT 1 A 298

13 209L 1 A 165

14 7LX5 2 B 196

16 6C61 2 B 243

17 6U42 1 1 138

18 6XI7 1 A 169

20 6MUP 2 B 90

21 5DX4 1 A 126

22 103M 1 A 154

25 2V22 1 A 296

27 2NZD 3 C 106

30 7K4M 2 B 146

31 3IA3 2 B 135

Cluster PDB ID Entity Chain Length

33 1N36 6 F 101

34 3OTO 15 O 88

35 6SPB 4 D 207

36 1N36 8 H 138

37 3OTO 19 S 80

38 3OTO 7 G 155

39 3OTO 4 D 208

40 1N36 2 B 234

41 1N36 13 M 118

42 3OTO 5 E 150

43 1N36 16 P 83

44 1N36 9 I 127

45 1N36 11 K 119

46 3OTO 10 J 98

47 1N36 20 T 99

48 7S1K 18 R 142

49 3OTO 17 Q 104

50 7QGH 16 P 271

51 3WKJ 4 D 93

52 6YHS 6 C 199

54 7S1K 46 q 98

55 7JIL 45 r 113

56 6TQO 3 C 205

57 7S1K 7 G 150

58 7S1K 54 y 80

Table 2.2: Chosen protein chains

To create the pipeline the Snakemake (Mölder et al., 2021) workflow management

system was used. In this tool, the rules are defined using Python-based description lan-

guage. Every rule defines how to get output files from input files which can be defined

through a shell command or a Python script. Snakemake automatically determines de-

pendencies between the rules using input and output files and builds a directed acyclic

graph. When executing the workflow, it will only execute those rules for those sam-

ples for which the files don’t already exist. This is especially useful when the pipeline

crashes or some more samples are added. Another advantage of Snakemake is that
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it scales simply from single to multicore or even to compute clusters or to the cloud,

without modifications to the code.

It was important to divide files into directories so that they don’t overwrite each

other because some of Rosetta’s modules create files with default names. Our pipeline

incorporates moving the files, creating fragments files, removing unnecessary files,

creating options files where parameters and paths to other input files are listed and

defined, creating structures (using more seeds for every sample to increase the speed of

creation as Rosetta AbinitioRelax module doesn’t support multithreading), combining

the structures in same files, cleaning the created structures of irrelevant atoms such as

hydrogen or OXT atom which stands as a placeholder for other possible residues, and

extracting the RMSD score in a separate file.

After obtaining the results with these proteins, another dataset for training contain-

ing only shorter proteins was created. Chosen proteins are listed in table 2.3. The

structural models used for training were obtained in the same manner as described be-

fore, the only difference was choosing protein IDs. The PDB was searched with length

and entity type filters and then only one protein from the structural group was selected

as a representative. For these proteins, the minimal length is 12 amino acids and the

maximal is 99, the median of lengths is 71 amino acids, the mean is 69.4 and the stan-

dard deviation is 21.835. Once again, bolded PDB IDs are the ones of the sequences

whose structures were used for validation.
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Cluster PDB ID Entity Chain Length

2 1BMG 1 A 98

8 4YOB 1 A 99

10 1C3T 1 A 76

34 1AB3 1 A 88

81 1B75 1 A 94

324 7PTI 1 A 58

449 5BMI 1 A 56

460 4ZYF 1 A 93

662 5AI3 1 A 54

817 1A70 1 A 97

899 5DKQ 1 A 91

971 1BDD 1 A 60

982 1AEY 1 A 58

1002 1A32 1 A 85

1131 1AME 1 A 66

1296 6QJK 1 A 97

1299 1AHO 1 A 64

1346 7O2K 1 A 60

1371 1CIS 1 A 66

1384 1AG6 1 A 99

1536 1BQT 1 A 70

1596 1C54 1 A 96

1602 1COI 1 A 29

1729 1B5M 1 A 84

1788 1ABQ 1 A 56

Cluster PDB ID Entity Chain Length

1806 5C02 1 A 25

1840 1B5B 1 A 94

1864 1CNR 1 A 46

1887 1A43 1 A 72

1915 1BT0 1 A 73

1959 1CMG 1 A 73

1964 6SVC 1 A 35

2010 1AP4 1 A 89

2024 1CM3 1 A 85

2042 1A91 1 A 79

2127 5D8V 1 A 83

2323 1BTB 1 A 89

2325 6SHR 1 A 64

2329 1BH0 1 A 29

2361 1AE2 1 A 86

2396 5EBX 1 A 62

2442 5DSU 1 A 75

2455 1CNL 1 A 12

2647 1B6Q 1 A 56

2679 5CN0 1 A 70

2707 4XDX 1 A 70

2794 4YDX 1 A 67

2799 1BO0 1 A 76

2983 1AZH 1 A 36

2992 7RN3 1 A 30

Table 2.3: Chosen short protein chains

2.4. Evaluation data

To assess ARES’s performances, Benchmark 1 from (Townshend et al., 2021) was

used. It includes all RNAs from the RNA-Puzzles blind RNA structure prediction chal-

lenge for which experimentally determined structures were published between 2010

and 2017, meaning the first 21 puzzles, except for Puzzle 16, but Puzzle 14 is in two

forms - bounded and free form, which is labelled 14b and 14f. For every puzzle, there

are three types of structural models: decoys, near-native models and a native structural
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model. A native structure is the real structure, obtained experimentally. Figure 2.5

shows the native structures. Decoys are structural models taken from the FARFAR2-

Puzzles dataset (Watkins et al., 2020). Near-native structures were created in the same

manner as decoys, using the FARFAR2 tool, with energetic restraint. For each puzzle,

the number of near-native structures created is 1% of the number of decoys. Table 2.4

shows how many structures are being evaluated for each puzzle, and figure 2.6 shows

the distribution of RMSD values of structures for each puzzle.

Figure 2.5: RNAs from Benchmark 1 from (Townshend et al., 2021)
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RNA Puzzle decoys near-natives native total

1 14052 141 1 14194

2 20000 200 1 20201

3 33442 334 1 33777

4 5766 58 1 5825

5 24901 249 1 25151

6 28859 289 1 29149

7 7963 80 1 8044

8 33086 331 1 33418

9 18660 187 1 18848

10 5873 59 1 5933

11 41952 420 1 42373

12 35506 355 1 35862

13 20296 203 1 20500

14b 24531 0 1 24532

14f 15112 0 1 15113

15 6123 61 1 6185

17 16529 165 1 16695

18 17091 171 1 17263

19 4499 45 1 4545

20 1547 15 1 1563

21 48146 481 1 48628

Table 2.4: Number of structural models in Benchmark 1

Figure 2.6: RMSD distribution per RNA Puzzle from evaluation dataset
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3. Network Architecture

The neural network used in this thesis is the one from (Townshend et al., 2021). Figure

3.1 shows the network architecture, and the idea of each layer is explained later in the

text. The number after the name of the layer is the number of channels that this layer

has. The goal of this network design is to recognize specific atom arrangements in

three-dimensional space or geometric patterns called structural motifs. Since the same

motif can be rotated or translated in space, the model’s key property is equivariance.

A network layer is equivariant to a transformation (in this case rotation or translation)

if the transformation of its input leads to a corresponding transformation of its output.

The initial layers recognize instances of the structural motifs and accumulate local

information while preserving information about the orientation and position of inputs.

The later layers collect the information from previous layers and get the global picture.

Furthermore, this also means that the network recognizes that finer-scale motifs, like

base pairs, assemble into coarser-scale motifs, such as helices. This is enabled by

another important property, invariance. Invariance means that rotation and translation

of input don’t lead to output transformation.

Figure 3.1: Network architecture

3.1. Atomic Embedding

The first layer in the network is atomic embedding. As equivariant convolution takes

3D coordinates of atoms with associated features for each atom as input, this layer

14



a, b - certain atom

rab = ∥r⃗ab∥ - length of the vector between atoms a and b

l - angular order,

l ∈ {0, 1, ..., L}
L - maximum order used, L = 2

m - angular index,

m ∈ {−l,−l + 1, ..., l}
E - dimension of the

equivariant convolution

c - radial index, c ∈ {0, 1, ..., E}
V l
acm - feature associated with atom a, for certain lcm group

in 3.5:

σ = 1

n = 11

µj =
12
11
j

C - Clebsch-Gordan coefficients

C ̸= 0 for |li − lf | ≤ lo ≤ li + lf

bl - learnable scalar bias term

(one per order)

d - new radial index

bd - learnable bias term

Wcd - learnable weight matric

Table 3.1: Labels and indices used in equations

generates the initial features, which are the encodings of the element types. The layer

uses one hot encoding for carbon, nitrogen and oxygen, while other element types are

not used. Features are stored in variable V l
acm, the indices are explained in table 3.1

and later in the text and the encoding is shown in 3.1. As the encoding shows, there

are 3 dimensions and channels used, currently c ∈ 0, 1, 2.

3.2. Equivariant Convolution

The most important layers in the model are equivariant convolution layers. Features

which are commonly used when predicting protein structure are element type, surface

shape, and the spatial distribution of charge and potential. In these layers, features are
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updated repeatedly by sharing the information locally, between neighbouring atoms.

The equivariant convolution is based on filter functions being applied one at a time to

each atom in the source atom’s local neighbourhood. The filter functions take only the

3D vector between the two atoms as input and their output is combined with the current

features of this source atom to produce updated features. The crucial task for ensuing

equivariance and orientation preservation is choosing the filter functions and how the

outputs are combined with features. There are two types of functions used: radial and

angular functions, in this case real spherical harmonics. The final output of the filter

function is equation 3.2, whereRc is the radial function and Y l
m is the angular function.

This choice of the filter function is valid because any function can be written in spher-

ical coordinates as a linear combination of spherical harmonics, as shown in 3.3. In

this equation,
∑N

nlm is a short form for triple sum,
∑N

nlm =
∑N

n=1

∑n−1
l=0

∑l
m=−l, anlm

are the coefficients which have to be determined, and Rnl and Y l
m are radial functions

and real spherical harmonics. N is the number of harmonics used and if it approaches

infinity, the result is the exact function. In most cases, it is enough to have the approx-

imation and use N ≥ 25. The indices l and m indicate the degree and order of the

function. The label l is called a degree because spherical harmonics take their simplest

form in the Cartesian coordinate system as homogenous polynomials of degree l in

(x, y, z). The order m is associated with the Legendre polynomial Pm
l , which is the

result of solving Laplace’s equation in spherical coordinates.

Spherical harmonics, more precisely Laplace’s spherical harmonics, are often used

to describe the aforementioned features because of their properties. The first property

is that Laplace’s spherical harmonics are a special set of spherical harmonics which

form a complete set of orthogonal functions. That means that any function defined

on a surface of a sphere can be written as a linear combination of these spherical

harmonics. Another property is that the space of spherical harmonics is closed with

respect to rotations and they can be transformed between themselves in a predictable

manner by rotation. That means that, in this case, proteins can be rotated just by

transforming coefficients in the series.

Spherical harmonics are functions which assign values from the unit sphere to the

set of real numbers, hence there are multiple ways to visualize them. Figure 3.2.A

shows spherical representations where the colour of the unit sphere corresponds to the

value of Y m
l . In Figure 3.2.B you can see the orbital representation, where for every

point of the sphere the radial component is added - the distance of the surface from the

origin is the absolute value of the harmonic. The colours green and yellow represent

regions where the function is positive or negative, respectively. In both figures, the

16



first row shows a spherical harmonic with a degree l = 0 and order m = 0. For each

next row, the degree increments by one. The middle column has m = 0, the right

columns are positive values, also incremented by one, and the left ones are negative

order values, decremented by one.

In 3.2 degree l is called angular order and m is called angular index and it deter-

mines which harmonic in the group is referred to. The maximum order used is L = 2,

and since there are 2l+1 harmonics per group (the harmonics are grouped by l), there

are M =
∑L

l=0(2l + 1) angular functions in total.

Figure 3.2: Spherical harmonics. A, spherical representation. B, orbital representation.

Since spherical harmonics can be used to parametrize only the functions on the

surface of a sphere, they are often combined with radial functions which can be used

for any 3D function, as shown in filter function 3.3. There are many radial functions

that can be used, but in (Townshend et al., 2021) the radial functions are implemented

with a dense neural network. For every neighbouring pair, a filter bank of Gaussians

is applied to the magnitude of the vector between them r⃗ab. The neural network has

three layers, the input layer where these Gaussians are used, after which there is one

hidden layer with a dimension of 12 and then the output layer withE scalar radial filter

outputs, as shown in equations 3.5 and 3.4. Parameter E is called the dimension of the

equivariant convolution and for three convolutions in the network, its value is 24, 12

and 4. In equation 3.2, c denotes which output is referred, c ∈ 0, 1, . . . , E and initial

features for each atom has a total of E = 3 radial features for three element types.

These functions don’t take the orientation of relationships between atoms into consid-

eration, they consider only the distances which makes them invariant to translations

and rotations. The orientations are covered with angular functions, which means each
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V 0
a00 = 1 if atom a is C

V 0
a10 = 1 if atom a is O

V 0
a20 = 1 if atom a is N

(3.1)

F l
cm(r⃗ab) = Rc(rab)Y

l
m(r̂ab) (3.2)

A(r⃗) =
N∑
nlm

anlmRnl(r)Y
l
m(θ, ϕ);N ≥ n > l ≥ |m| ≥ 0 (3.3)

[R0(rab), R1(rab), ..., RE(rab)] = Dense([G0(rab), G1(rab), ..., Gn(rab)]) (3.4)

Gj(rab) =
1√
2πσ

e−
(rab−µj)

2

2σ2 (3.5)

Llo
acmo

(V li
acmi

) =
∑

mi,mf

C
(lo,mo)
(lf ,mf ),(li,mi)

∑
b∈neighbors(a)

F
lf
cmf (r⃗ab)V

li
bcmi

(3.6)

Table 3.2: Formulas used in the first few layers

filter function is equivariant to rotations within an angular order l.

Equation 3.6 shows how filter functions are combined with features V . All indices

and labels are specified in table 3.1, only subscripts f , i and o are added, and they

stand for the filter, input and output features, respectively. In cases when lf and li

yield outputs of the same angular order lo, new values of V are calculated for each

combination and outputs are concatenated across the c dimension. The neighbouring

function, and thus the point convolution, is restricted to theK = 50 nearest neighbours

(K includes the source atom itself) because laws of physics regarding intermolecular

and intramolecular interactions are local.

3.3. Pointwise Normalization

The equation for pointwise normalization is given in equation 3.7, where indices mean

the same as before, and are given in table 3.1. The normalization is calculated sep-
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arately on each atom’s features, as one can see in the equation. Practice shows that

neural networks learn more easily with normalized data so the choice of such layers is

valid.

3.4. Pointwise Non-linearity

As the name itself says, pointwise non-linearity is also calculated separately on each

atom’s features. The equation 3.8 shows how it is calculated, with an explanation for

η function in 3.9. Without non-linearity in a neural network, it would be impossible

to model most real-world data, due to the fact that most of the relationships are non-

linear. The chosen non-linearity η is called shifted softplus, and the shifting ensures

that η(0) = 0 and improves the convergence of the network. It shows similarity to

ELUs, while having infinite order of continuity.

3.5. Pointwise Self-Interaction

Pointwise self-interaction is used to mix information across radial channels between

equivariant convolution layers in order to update features, and the equation is shown

in 3.10. In addition to the old indices, a new radial index d is defined. The number of

these output radial indices is called the dimension of the pointwise self-interaction and

it is the same for each angular order l of spherical harmonics within the self-interaction

layer. The dimensions in the model are 24, 24, 12, 12, 4, and 4, respectively. The bias

term is used only for angular order 0.

3.6. Per-Channel Mean

Equation 3.11 states that this layer averages features corresponding to the zeroth-order

harmonic across all atoms. Per-channel mean comes after all equivariant convolu-

tions, so positions of atoms and all of the features that are not related to zeroth-order

harmonic are not important anymore and are dropped in this layer. The zeroth-order

harmonic is invariant to rotations, therefore all further layers will be invariant to ro-

tations. New features E are indexed only by the radial index c and it represents a

molecule-wide embedding that is insensitive to the original RNA’s size.
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N(V l
acm) =

V l
acm√∑

c,m (V l
acm)

2
(3.7)

P (V l
acm) =

η(V l
acm), if l = 0

V l
acm · η(

√
(
∑

m (V l
acm)

2) + bl), otherwise
(3.8)

η(x) = ln(0.5ex + 0.5) (3.9)

Sl
adm(V

l
acm) = bd +

∑
c

V l
acmWcd (3.10)

Ec =
∑
a

V 0
ac0 (3.11)

Ed = bd +
∑
c

WcdEc (3.12)

Table 3.3: Formulas used in other network layers

3.7. Dense Layers

Dense layers are regular fully connected neural network layers, with standard equation

3.12.

3.8. Parametrization and initialization

From figure 3.1 one can see that this model is not a big model, only 20 layers, where 5

layers have fixed parameters - pointwise normalizations, per-channel mean and atomic

embedding. There are 18.1k parameters in total. All biases were initialized to 0, and

other parameters were initialized using Xavier uniform initialization. Only the first

fully connected layer uses an ELU non-linearity, while the other two layers don’t use

non-linearity.
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3.9. Training

The loss used for training was Huber loss, as a function of the difference between the

predicted and true root mean square deviation. Equation 3.13 shows how the loss is

calculated. In this equation, a is the difference between the predicted and true value

and δ is a function parameter.

Lδ(a) =

1
2
a2, for |a| ≤ δ

δ · (|a| − 1
2
δ), otherwise

(3.13)

Figure 3.3 shows the Huber loss function (δ = 1) and squared loss in green and

blue, respectively. The Huber loss function is quadratic for smaller a values and linear

for larger ones. It was introduced to solve squared loss’ biggest disadvantage - it tends

to be dominated by the outliers, since the Huber loss is less sensitive to them.

Figure 3.3: Huber loss

3.10. Evaluation

Even though when training the model predicted and true RMSD are compared, the

goal of this model is actually to get a new scoring function for RNA structures so

evaluation of the models was not done by comparing the exact scores. Instead, in

order to see how good a model performs, the top 1, 10 and 100 best structural models

according to the given score were studied. In chosen groups, the structural model with

21



the best true RMSD score was found and this RMSD was marked in the table. It is not

important whether the model gives the exact RMSD or not, it is more important that it

can differentiate good structural models from bad ones.
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4. Results

4.1. Choosing hyperparameters

Authors from (Townshend et al., 2021) tried out 100 combinations of hyperparameters,

so there was no need for a thorough analysis of hyperparameters, but since the loss

function was unstable, a few additional tests were done. The first test was done to see

if the change in batch size would influence the number and amplitude of spikes. Figure

4.1 shows the loss when the model is trained with batch sizes 8 and 16, while all the

other parameters remain unchanged. The opaque lines show a smoothened loss, while

the more transparent colours show the real values. Because the batch size is different,

the number of steps on the x-axis is not optimal, therefore figure 4.2 shows the same

losses with a number of epochs on the x-axis.

Figure 4.1: Hyperparameters test - batch size
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Figure 4.2: Hyperparameters test - batch size (over epochs)

Another test was to see how the learning rate affects the loss function. Figure

4.3 shows the loss functions when the model is trained with learning rates 0.005 and

0.00005, while the other hyperparameters remain the same, with batch size set to 8.

The graph shows that the smaller learning rate causes the model to learn slower.

Figure 4.3: Hyperparameters test - learning rate

The final comparison, shown in Figure 4.4, was between the hyperparameters used

in (Townshend et al., 2021) - learning rate of 0.01 and batch size 16 and values used in

previous comparisons - learning rate 0.005 and batch size 16. The loss had the smallest

values when using hyperparameters from (Townshend et al., 2021). Consequently, all
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of the models mentioned further in the text are trained using hyperparameters from

(Townshend et al., 2021).

Figure 4.4: Hyperparameters test - final

4.2. Training results

Figures 4.5.A and 4.5.B show the loss function. The purple line represents the loss

when the model was trained with the original RNA data - the same structural models

for the same 18 RNAs as in (Townshend et al., 2021). The turquoise line refers to the

loss of the model trained with protein data and we can see that the values are higher

than in the case of training with RNA. Because of this, the model was trained with both

protein and RNA data - shown using the red line in the figures. This did not reduce the

loss a lot so we tried to fine-tune the model trained on protein data with RNA data. The

loss for this is shown with the green line and it seems to be even better than when the

model is trained with RNA data only. The difference between the figures is in the fact

that 4.5.A has the number of steps on the x-axis, which is not the best option because

there is a different number of samples, and therefore a different number of steps. In

contrast,4.5.B has the number of epochs on the x-axis, but does not provide the same

amount of information as 4.5.A. Figures 4.5.C and 4.5.D show the validation loss for

the same training runs, once again with steps and epochs on the x-axis. The validation

intervals were not the same for each training which can be seen on graph 4.5.C.
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Figure 4.5: Loss functions - training on proteins. A and B, training loss. C and D validation

loss. 26



It is clear that the loss takes on higher values when the model is trained on proteins

than when trained on original RNAs. A possible explanation could be the fact that the

proteins are much longer than the original RNAs. Because of this, we decided to try to

train the model with shorter proteins, on the other generated dataset.

Figure 4.6 shows the loss functions when the model was trained with longer pro-

teins, with short proteins and with original RNAs. It is clear that when training with

short proteins the loss is significantly lower than when training with longer proteins.

Figure 4.6: Loss functions - short proteins vs proteins

Since the loss had lower values, we tried to train using the combination of short

proteins and RNAs and to fine-tune the model trained on short proteins with RNAs.

The loss functions can be seen in Figures 4.7.A and 4.7.B, and validation loss functions

in Figures 4.7.C and 4.7.D. As in the previous figures, there is the loss function with

steps and epochs on the x-axis because of the difference in the number of samples,

where the one with steps on the x-axis is trimmed on the right side. Also, the loss

function in 4.7.A is smoothened.
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Figure 4.7: Loss functions - training on short proteins. A and B, training loss. C and D
validation loss.
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Lastly, we decided to combine shorter and longer proteins. Figure 4.8.A shows the

loss function for the model trained with all of the proteins, the model trained with all

proteins and RNAs combined and the model trained with all of the proteins and then

fine-tuned with RNA data. This loss is smoothened and trimmed, as there is a larger

number of steps for models trained with all of the proteins because of the larger dataset.

Figure 4.8.B is the same loss, but on the x-axis, there is a number of epochs instead

of a number of steps. Figures 4.8.C and 4.8.D show the validation loss, with number

of steps and number of epochs on the x-axis, respectively. Once again, the validation

interval on figure 4.8.C was not the same for every model.
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Figure 4.8: Loss functions - training on all proteins. A and B, training loss. C and D validation

loss. 30



4.3. Evaluation results

Figure 4.9 shows evaluation results. In (Townshend et al., 2021), authors have up-

loaded their evaluation results and these are labelled as ARES. One can observe that

this table is not the same as the one in the original paper. The tables differ for Puzzles

14b and 14f, and this is because the authors haven’t published the near-native structural

models for these Puzzles, so there are no good structural models to be scored well and

found in the top 1, 10 and 100. Even though the same model was trained with the same

data and the same hyperparameters, the model didn’t learn as much. The model that

we have trained is in the right part of the figure, labelled as RNA, and this model will

be used as the benchmark further in the text.

Figure 4.9: Evaluation results - comparison with (Townshend et al., 2021)

If we observe each cell in the tables, we can see that out of 63 cells in total, the

model that we have trained performed better for 6 cells, while ARES was better for

19 cells. This reflects that the model that we have trained on RNA data is better for

Puzzles 1, 9, 14b and 19, but worse for Puzzles 3, 5, 6, 7, 8, 10, 13, 20 and 21, meaning

better for 4 puzzles and worse for 9.

Figure 4.10 shows evaluation results for models trained on longer proteins and

protein-RNA combinations.
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Figure 4.10: Evaluation results - models trained on proteins

The model trained with only protein data is much worse than the one trained with

RNA. It is worse in 33 out of 63 cells, and better in 5 cells. This manifests in a way that

it is better for Puzzles 5 and 7, the same for Puzzle 11 and maybe Puzzle 20, and it is

worse for all the other puzzles. The model trained with both proteins and RNA is better

than the model trained only on proteins, but worse than the one trained only on RNA

data. In comparison to the model trained on RNAs, it is worse in 18 cells and better in

2 cells. It improved the results for Puzzles 8 and 11, it is the same for Puzzles 2, 4, 5,

7, 14f, 15, 17 and 20 and worse for the rest. In total, better for two puzzles, the same

for 8 and worse for 11 puzzles. The model trained on proteins and then fine-tuned with

RNA is even better than the one trained on proteins and RNA combined. If compared

to the model trained on RNA data, it performs worse in 17 cells and better in 8 cells.

It is better for Puzzles 8, 11, 14f, 17, 20 and 21, and the same for Puzzles 2, 5, 7, 14b,

15 and 19. This means it is better for 6, the same for 6 and worse for 9 puzzles.

Figure 4.11 shows evaluation results for models trained on short proteins and short

protein-RNA combinations.
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Figure 4.11: Evaluation results - models trained on short proteins

The model trained only on short proteins is better than the one trained on longer

proteins, but worse than one trained on proteins and fine-tuned on RNA. If we compare

it to the model trained on the original RNAs it is worse in 24 cells and better in 9 cells.

This means it is better for Puzzles 5, 7, 10 and 11, and the same for Puzzles 6, 12,

17 and 19, in total it improved for 4 puzzles, stayed the same for 4 puzzles and it

deteriorated for 13 puzzles.

The model trained on both short proteins and RNAs is the first model that is better

than the one trained only on RNAs. It is better in 11 cells and worse in 10 cells. It is

better for Puzzles 5, 7, 11, 14f, 17 and 20, for Puzzle 13 it got one cell better and one

worse, and it is worse for Puzzles 3, 4, 9, 10, 14b, 18 and 19. In total it is better for 7

puzzles, worse for 7 puzzles and the same for 7 puzzles.

The model trained on short proteins and fine-tuned on RNA gives the best results.

It performs better in 16 cells and worse in 6 cells. It works better for Puzzles 5, 6, 7, 8,

10, 11, 17 and 21, worse for Puzzles 1 and 9, and Puzzles 13, 14f and 20 have the case

where it has one cell better and one worse. If we consider the aforementioned case

staying the same, then this model performs better for 8 puzzles, worse for 2 puzzles

and stays the same for 11 puzzles in total.
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Figure 4.12: Evaluation results - models trained on all proteins

When we combined longer and shorter proteins and trained the model on the com-

bined protein data, the evaluation results were better than when training only on RNA

data. It is also better than the best one with longer proteins (trained on proteins and

fine-tuned on RNA), but worse than the best one with shorter proteins (trained on short

proteins and fine-tuned on RNA). Compared to the model trained only on RNA data,

it is worse in 9 cells and better in 11 cells. In terms of puzzles, it is better for Puzzles

3, 7, 11, 14f, 17, 21 and worse for Puzzles 6, 9, 10, 14b, 18, 19, and 20.

The model trained on combined protein and RNA data had worse results than one

trained only on proteins combined. In comparison with the model trained on RNA data

only, it is worse in 18 cells and better in 5. For Puzzles 2, 14b, 15 and 17 it has the

same results, it has one better and one worse cell for Puzzle 14f and it is better for

Puzzles 11, 20 and 21.

The model trained on combined protein data and then fine-tuned on RNAs had even

worse results. It is worse in 27 cells and better in 3. It has the same results for Puzzles

2, 5 and 7, it is better for Puzzles 11, 14f and 17, and it has one better and one worse

cell for Puzzle 20.

Even though the results published with (Townshend et al., 2021) are not achievable,

if we want to compare our best model with theirs, the evaluation results can be found

in Figure 4.13.
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Figure 4.13: Evaluation results - comparison best with (Townshend et al., 2021)

ARES is better in 9 cells and worse in 5 cells. Our model improved for Puzzles

11, 14b, 17 and 19, and got worse for Puzzles 3, 9, 13, 20 and 21. The best-scoring

structural model is near-native in 57% of Puzzles for ARES and in 43% for our model.

The top 10 best-scoring models include at least one near-native model for 71% of the

benchmark RNAs when using ARES, compared with 52% for the model trained on

short proteins and fine-tuned with RNA. If we look at the top 100 best-scoring models,

in both cases in 76% of the RNAs the best models include at least one near-native

model.
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5. Discussion

According to the results, it seems that we can improve the scoring function using both

protein and RNA data. Although training on longer proteins did not produce better

results, this could be due to the complex structures that longer proteins often fold

into. As the model architecture is shallow, it is probably not capable of distinguishing

structural patterns as well as in the case of shorter biomolecules. In (Townshend et al.,

2021) the model was trained only with 18 short RNAs so it can make sense that it learns

better with shorter proteins. Besides the complexity of the model, proteins’ complexity

could also be the reason for worse results. Even if the model learns these structures,

during evaluation we test its performances on RNA Puzzles, which do not take on such

complex structures as proteins, so this could also be a reason why the results aren’t as

good as when training with longer proteins.

On the other hand, when we train the model on shorter proteins, if we use only

the proteins, we still don’t get better results than when training with RNAs, but we

get much better results than when training with longer proteins. In both cases, adding

RNA to the training data improves performance. It seems that fine-tuning the model

that has already been trained on protein data with RNAs works even better than when

we train the model on combined protein and RNA data. The reason for such results

could be due to the model being able to learn more about RNA when it is fine-tuned

than when it is training on both protein and RNA data, and can not distinguish the

difference.

The fact that we got better results when training the model with longer and shorter

proteins than when training with only RNA data is very interesting, since this would

mean that we can utilise protein data, whose quantity is much higher than RNA data,

for predicting and scoring RNA structures. Worse results when adding RNA to the

training set were not expected and it could be because the model is overfitted so adding

more data is actually corrupting the weights. It could also mean that protein and RNA

data are quite different, and when the model has learnt properly about protein data,

it can not be switched to RNA data. Next experiments should include searching for
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better hyperparameters for fine-tuning, testing if the model is overfitting and repeating

the experiment with smaller and larger amounts of combined longer and shorter protein

data.

Another thing that could have impacted the results is the evaluation dataset itself. It

consists of only 21 RNAs, therefore expanding the dataset could give a more objective

evaluation. This dataset was chosen so the comparison between (Townshend et al.,

2021) and our models would be possible, but even if 21 RNAs is enough, the dataset

isn’t optimal. There is not an equal number of structural models per puzzle, and this

number differs highly - for some puzzles, there are only about 1500 structures, while

for others there are more than 48000 structures. Ignoring the number of structures, if

we look at the distribution of RMSD values for each puzzle, the distribution varies a

lot. This impacts the simplicity of getting a good structure, since if all of the structures

are close to the native one (as is the case for Puzzle 2), the task of giving a good score

to at least one near-native structure is trivial.

Except for changing or expanding the evaluation dataset, another thing that could

be tried out is a better selection of the training dataset. All of the protein datasets

used for training were chosen randomly, the only thing that was cared for is that every

protein should be from a different structural cluster and if their length is in the desired

range. The reason for better results with shorter proteins could have come from the

selection of proteins as short and longer proteins were not from the same clusters. It

would be better to include some biological insights and see what structural patterns

are included in the training and in the evaluation to see if some important pattern was

accidentally skipped or if it prevails. There are also some structural patterns, like

beta sheets, which proteins have and RNAs don’t, so it could be better to avoid such

structures when choosing the training dataset.

Additionally, the choice of Huber loss as a loss function maybe isn’t optimal. It

may not be optimal due to the fact that how good the loss function was doesn’t tell

much about how good evaluation results would be for that same model. This may

be improved by trying to predict the RMSD group, not the RMSD value itself. For

example, using bins 0-2Å, 2-4Å, 4-6Å etc and then using cross-entropy loss. These

bins are more similar to the way of evaluating the results and should be easier to obtain.

In future work, one thing we should try is to expand the model, and see if the

problem with longer protein structures was that the model was too shallow. Another

thing to try out with the model is changing the loss function. As for the evaluation,

the dataset should be equalized, we should try to generate more structures and get the

distribution of RMSD values which are more alike. We could also add more RNAs to
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the evaluation dataset, preferably RNAs which are different to the ones currently in the

training and evaluation datasets.
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6. Conclusion

The aim of this thesis was to investigate to which extent information from the pro-

tein structure data can be used to improve the scoring of RNA molecules. This was

done by retraining the ARES neural network model (Townshend et al., 2021) for atom

configuration scoring and obtaining results on the RNA structure data.

The results have shown that combining protein and RNA data can improve the scor-

ing function. It is best to train the model on shorter proteins and fine-tune it on RNA

data. It is also possible to get better results by training the model on a larger amount of

protein data than when training only on RNA data. This confirms the premise that the

ARES model learns entirely from atomic structure, using no other information such as

related RNA or protein sequences, and it makes no assumptions about what structural

features might be important.

There is much more that can be done to confirm the obtained results. Expanding

the model by adding more equivariant convolution layers, changing the loss function

of the model, expanding and equalizing the evaluation dataset are just some of the

examples. It would also be useful to have biologically more detailed insight into the

training, validation and evaluation datasets so that more conclusions could be made

about structure complexity, existence or non-existence of certain structural motifs and

the general relationship between RNA and protein structures.

The fact is that RNA structure prediction and structure scoring tasks are difficult

and there are far fewer structural measurements of RNA molecules currently available,

which adds to the difficulty of the task. The evidence that protein data can help with

improving the results for RNA scoring, and consequently for RNA prediction, is im-

portant because the amount of protein data is much higher, therefore there are more

samples which can be utilized for training the models and in the long run do the same

revolution with RNAs as AlphaFold2 (Jumper et al., 2021) did with proteins.
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Combining Protein and RNA Structures Information in Developing New Scoring
Function

Abstract

Compared to protein structure prediction, the RNA structure prediction task is even

more difficult due to the fact that there are far fewer structural measurements of RNA

molecules currently available. One way of approaching the structure prediction prob-

lem is to train a neural network that can score how far a given configuration of atoms

is from being a valid RNA molecule. Such a model, named ARES (Atomic Rotation-

ally Equivariant Scorer), has recently been implemented. This thesis has investigated

to which extent information from the vast pool of protein structure data can be used

to improve the scoring of RNA molecules. It has been shown that the combination of

protein and RNA data can improve the results. Training the model on a larger amount

of protein data has confirmed the fact that the ARES neural network can utilize the fact

that both proteins and RNA molecules are long chains of organic compounds and fold

under similar conditions inside a cell and consequently this model has better results

than the one trained only on RNA data.

Keywords: RNA structures, protein folding, Equivariant Convolution, spherical har-

monics, root mean square deviation



Kombiniranje informacija o strukturi proteina i RNA u razvoju nove funkcije
bodovanje temeljene na dubokom učenju

Sažetak

Predikcija strukture RNA molekula još je teži zadatak od predikcije stukture pro-

teine zbog toga što je trenutno dostupno značajno manje strukturnih mjerenja RNA

molekula. Jedan od pristupa predvid̄anju strukture RNA molekula je treniranje neu-

ronske mreže koja bi ocjenjivala koliko je neka konfiguracija atoma daleko od toga da

bude ispravna RNA molekula. Jedan takav model, nazvan ARES (Atomic Rotationally

Equivariant Scorer), nedavno je implementiran. Ovaj rad istražio je u kolikoj se mjeri

velika količina podataka o proteinskim strukturama može iskoristiti da bi se popravilo

ocjenjivanje strukture RNA molekula. Pokazano je da kombinacija podataka o struktu-

rama proteina i RNA molekula može poboljšati rezultate. Treniranje modela na većoj

količini podataka o strukturama proteina pokazuje da ARES neuronska mreža može

iskoristit činjenicu da su i proteini i RNA molekule u osnovi dugi lanci organskih spo-

jeva koji se svijaju u sličnom okruženju unutar stanice i posljedično takav model ima

bolje rezultate od onoga treniranog samo na podacima o strukturama RNA molekula.

Ključne riječi: RNA strukture, savijanje u proteinskoj strukturi, ekvivarijantna kon-

volucija, kugline funkcije, korijen srednje kvadratne devijacije


