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1 Introduction

Proteins, one of the most important molecules that make life possible, have
been studied from the beginning of the 19th century. However, only in the
1950s has there been a method that could reliably determine the structure of
such molecules1. From that point onward it was discovered that similar proteins
(in terms of their structure) share a surprisingly similar function. Around that
time, scientists found out that the proteins were intricately tied together with
a formerly mysterious molecule in the body called the deoxyribonucleic acid
(DNA). The idea was that uncovering the structure of the DNA could not
only unlock secrets of the proteins but also point to hidden similarities across
otherwise unrelated species.

The idea turned out to be a exceptionally fruitful one. Careful analysis of the
structure of the DNA revealed a 99% similarity between all mammals, thereby
pointing to the conclusion that most of the life on Earth had a common ancestor.
This started the �eld of comparative genomics, uncovering evolutionary trees
revealing even more striking similarities between seemingly unrelated organisms.

The main motivation behind this thesis is the development of a tool that will
aid in the task of comparing the DNA of two organisms, namely the problem of
�global DNA sequence alignment�. But before I formally state the problem the
tool is trying to solve, it is necessary to formalize our notation. Firstly, as the
DNA is a long chain of four di�erent nucleic acids, one can mathematically think
about the DNA as a string over the alphabet of size four, namely {A,C,G, T}2.
The problem of global sequence alignment can be introduced as follows: given
two strings A and B over an alphabet {A,C,G, T}, �nd a mapping between
them that will map regions of one DNA string into their homologous3 regions
on the other DNA.

The precise mathematical de�nition of this will be stated after some funda-
mental concepts have been introduced. The next section contains a biological
primer that will serve as a brief introduction to the biological underpinnings of
the problem. Further on, an introduction to the algorithmic and mathemati-
cal concepts will be presented. Finally, the tool and its methodology will be
described, as well as the results.

1this was the famous Sanger's method
2the characters correspond to individual nucleic acids: adenine, cytosine, guanine and

thymine
3homologous, as in related by function or lineage
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2 Biological Primer

In order to understand the material presented in this thesis, one should have
a modest understanding of fundamental biological concepts like DNA, RNA
and proteins. I'll present a brief history of genetics as well as an overview of
biological concepts.

Even though the �eld of bioinformatics is vast, the minimum biological back-
ground for almost any bioinformatics book can be �tted just in several pages.
The following historical overview is mostly based on [2].

2.1 The discovery and structure of a cell

Initially, biology was primarily concerned with botany and zoology. Animal
anatomy, medicine, pharmacology and basic taxonomy were the main topics
that were studied. This, however, changed in 1665 when microscopy pioneer
and public animal dissection performer Robert Hooke discovered that organisms
are composed of individual parts that were named cells. This discovery changed
turned biology into a science beyond the reach of the naked eye. To quote [2],
�In many ways, the study of life became the study of cells�.

A normal animal cell has a variety of mechanisms that control its behavior:
when to replicate, synthesize a compound or even die that are called pathways.
They are complex networks of chemical reactions that �t together to form a
remarkably reliable and complex algorithm that controls the life of a cell and is
�still beyond our comprehension�.

Despite its complexity, the cell can be adequately analyzed by noting its
three major components that are common to all living organisms: the DNA,
RNA and the proteins. The DNA acts as a library, storing all the information
required to replicate a new cell from scratch; the RNA is used as a mean to
transfer information and materials around the cell; while the proteins do the
actual work in the cell - they are the compounds that build the cell, they make
chemical reactions happen and are otherwise the main working force of the cell.

2.2 Early genomics

Early scientists were often intrigued by the hereditary properties of living beings.
Even ancient Jews had a law that states if a mother had lost her two male siblings
due to circumcision, her son would not be circumcised until a later age, as there
was a massive risk of hemophilia.[3]

In the 19th century an Augustinian monk Gregor Mendel conceived an ex-
periment that would earn him the title of �father of modern genomics�. He
planted a plethora of pea plants in the monastery's garden and observed a lot
of hereditary properties. In the most notable instance, he looked at the seed
color of the pea plant. He noted that when a yellow pea and a green pea
breed together, the o�spring were always yellow. However, in the next gener-
ation of plants, the green peas reappeared in a ratio close to 1 : 3. To explain
this phenomenon Mendel postulated that each plant had two distinct objects
of hereditary material that coded its color. He called this objects genes. He
argued that the yellow seed color was �dominant� to the green color (which was
�recessive�), but the recessive gene was still present in the organism.[4]
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2.3 The position of genes within a cell

As was hinted in the introduction, the hereditary material of a living organism is
stored in the DNA within a cell. Ironically, scientists long ignored the DNA as it
was a long linear molecule comprised of only four simple chemical compounds:
nitrogenous bases adenine (A), guanine (G), cytosine (C) and thymine (T).
They were under the impression that a long repetitive molecule couldn't hold
the secrets of life and they looked for genetic material in the proteins that
actually manifested the observable behavior.

It was only in the �rst part of the 20th century that Oswald Avery proved
that one should look to the DNA in search of hereditary properties. He isolated
two strains of pneumonia, an R strain and an S strain, which could be identi�ed
via a microscope. The S strain had the ability to transform the R strain in the
S strain, even if the S strain wasn't alive. Avery extracted the building parts
of a dead S strain cell and each time tested could the new mixture cause the
transformation. He found that removing the DNA from the S strain bacteria
would block the ability of the R strain to transform, so he concluded that the
DNA must be holding the information required to build the proteins unique to
the S strain.[5]

As the DNA is a long linear molecule the conclusion was that parts of it must
be responsible for hereditary behavior. DNA usually came in pairs of two, which
gave an explanation to Mendel's observation that every organism contained two
distinct objects of genetic information, one of which dominates the other.

Another famous experiment that predates Avery's discoveries bears witness
that genes were coded into the DNA. In the 1920s Thomas Morgan conducted
similar experiments as Mendel, only with fruit �ies which feature short life spans
and produce numerous o�spring. The white-eyed male �y was mated with its
red-eyed sisters and its progeny was scrutinized closely for a few generations.
The researchers observed that that white eyes appeared dominantly in males,
which suggested that the �male gene� and the eye color gene were closely re-
lated. Further analysis revealed severals pairs of genes that occurred in strict
dependence of each other. By examining the relative occurrence of two genes
one could infer the �order� of the genes and conclude that there was a linear
order between them. This order served as evidence that they reside on some
linear molecule.[2]

2.4 From chromosomes to proteins

The DNA of a cells resides in a thick chromatic structure called the chromo-
some. By the early 1940s, researchers understood that a cell's genetic traits
were hereditary and that they were organized in genes that resided on the chro-
mosomes. They didn't, however, know what do the genes do to give raise to
the cell's traits. George Beadle and Edward Tatum were the �rst to identify
that genes actually contain information to code for a particular protein. They
worked with the bread mold Neurospora that can survive on a very limited died
of sucrose and salt. In 1941 they irradiated the mold with x-rays and examined
their growth afterwards. As expected, some of the spores lost their ability to
survive on the medium, so Beadle and Tatum postulated that the x-rays mu-
tated one of the genes responsible for processing these simple nutrients into more
complex compounds like amino acids. This gave raise to a simple conclusion
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that one gene codes for one protein. This was a predominant theory during the
next 50 years until scientists discovered that it is possible for a gene to produce
a multitude of proteins.

The question of how exactly do the genes on the chromosome code the pro-
teins remained. The DNA can be visualized as a long string of characters over
the alphabet of acids {A,C,G, T}. A protein is a potentially long chain of amino
acids, so one can think about them as a string over an alphabet of 20 as there
are 20 di�erent amino acids. The only feasible way for the DNA to code for a
protein would be to use a substring of length at least three to code for a single
amino acid as 43 > 20. This is exactly how it works: each amino acid is coded
with a contiguous substring of length exactly three this mapping is summarized
in table 1. The coding three letter substrings of the DNA are called codons.

Amino acid Codon
Ala/A GCT, GCC, GCA, GCG
Leu/L TTA, TTG, CTT, CTC, CTA, CTG
Arg/R CGT, CGC, CGA, CGG, AGA, AGG
Lys/K AAA, AAG
Asn/N AAT, AAC
Met/M ATG
Asp/D GAT, GAC
Phe/F TTT, TTC
Cys/C TGT, TGC
Pro/P CCT, CCC, CCA, CCG
Gln/Q CAA, CAG
Ser/S TCT, TCC, TCA, TCG, AGT, AGC
Glu/E GAA, GAG
Thr/T ACT, ACC, ACA, ACG
Gly/G GGT, GGC, GGA, GGG
Trp/W TGG
His/H CAT, CAC
Tyr/Y TAT, TAC
Ile/I ATT, ATC, ATA
Val/V GTT, GTC, GTA, GTG
START ATG
STOP TAA, TGA, TAG

Table 1: Mapping between the codons and the amino acids

Understanding the connection between DNA and proteins began with the
realization that proteins could not be made directly made from DNA as pro-
tein synthesis happen outside the cell nucleus, while DNA resides in it. The
�rst to explain this mechanism were Benjamin Hall and Sol Spiegelman that
demonstrated that a molecule called RNA can bind with the DNA and then
transfer the information to the protein factories called the ribosomes. Thus,
DNA served as a template used to copy a particular gene's genetic information
to the ribosome to make a particular protein. The process of of transferring
DNA information to the RNA is called transcription.

Another important discovery about the DNA came from the realization that
not all of the information on the DNA was always used to make proteins. The
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cells that have a well de�ned nucleus are called eukaryotic and they have both
coding regions called exons and non-coding regions called introns in the DNA.
The other type of cells that do not have a nucleus are called prokaryotic and
they usually aren't found in multi-cell organisms4. Their DNA, contrary to
the eukaryotic cells, have no introns - meaning that all of the DNA material is
e�ciently used to code for proteins. This can be explained with natural selection
as using introns is energetically ine�cient, which is important in organisms with
a short life span.

(a) A typical prokaryotic cell, [7]

(b) A plant eukaryotic cell, [8]

4some cyanobacteria may be multicellular, see [6]
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2.5 Proteins and how they are made

As stated previous, proteins are long chains of amino acids that play many
critical roles in a cell. Unlike the DNA that is highly regular, protein structure
is highly variable and intricately interlaced with their function. Here presented
is a short describing a few examples of their function:

Antibody proteins Antibodies bind to speci�c foreign particles, such as viruses
and bacteria, to protect the cell and its host.

Enzyme Enzymes are the catalyzers of chemicals reactions that take place
inside a cell.

Structural component Those proteins build structural components of the
cell such as the cell well and can form complex tissues such as elastic
�bers and muscles.

In 1820 Henri Braconnot identi�ed the �rst amino acid, glycine and by the
early 1900s all twenty amino acids have been discovered [2]. They are combined
together in a cell organelle ribosome to form a protein in a processes called
translation. The ribosome gets the required information what protein to form
from the RNA that was transcribed from the DNA. This �ow of information,

DNA → transcription → RNA → translation → protein,

is referred to as the central dogma in molecular biology. This pathway
justi�es the vast interest of researchers in DNA sequencing and analyzing tech-
nologies which will be presented in the next section.

2.6 Analyzing a DNA

I will present the most important biological tools that are used to extract and
analyze an organisms DNA sequence.

DNA copying Experimental techniques such as gel electrophoresis, used for
measuring DNA length, require a large amount of identical copies for any
statistical signi�cance. Since it is di�cult to extract a single or even
hundreds of molecules with modern instruments, amplifying DNA to yield
billions or more copies is often a prerequisite of further analysis. This is
achieved via cloning. The process starts with breaking DNA into small
pieces and then inserting each individual piece inside a viral DNA. The
virus does not lose its ability of self-replication, but now replicates with
the inserted DNA string.

Measuring DNA length The previously mentioned gel electrophoresis tech-
nique allows one to measure the length of a DNA fragment without actu-
ally knowing the sequence in advance. As the DNA is a negatively charged
molecule, it will migrate in a gel when subjected to an electric �eld. The
gel acts as molecular �brakes� so that heavier (in this case also longer),
molecules move slower than faster ones.
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Cutting a DNA Restriction enzymes are compounds that act as molecular
separators that cut the DNA at occurrences of a certain string (recognition
sites). One example is the BamHI enzyme that cuts at every occurrence
of the string GGATCC.

Probing The task of �nding whether a particular DNA fragment occurs in a
DNA solution can be solved by the processes of hybridization. A comple-
mentary DNA strand with �uorescent or radioactive tags is inserted into
a single strand solution, the un-hybridized strands are washed away the
solution is tested for change in wavelength or radioactivity.

Sequencing DNA One of the most important methods, Sanger's method,
works by arbitrarily cleaving parts of the DNA o� only one end. One
is then presumably left with all possible pre�xes of the analyzed strand.
This is achieved with a �uoresce labeled di-deoxynucleotidetriphosphates
that attach to a DNA end and can not be continued. All what is left
is running the mixture through gel electrophoresis and reading o� the
tags at the end in reverse order. This method has been supplanted by
novel �Next-Gen� sequencing methods for large-scale automated genome
analysis. However, it remains in wide usage, especially for smaller-scale
projects and for obtaining long contiguous sequences of DNA reads (500
- 1000 bases).

2.7 Mutation and species diversity

Genetic makeup manifests itself in traits such as eye color or susceptibility
to Huntington's disease. The human genome, for instance, has over 3 billion
base pairs, and even though there is only a 0.1% variation between any two
individuals, no two individuals are quite the same. This can be easily explained
on a formal mathematical level as 0.1% × 3 · 109 = 3 · 106, so the number of
theoretically di�erent genomes is a vast 43000000.

Another surprising fact is that when analyzing the genome of two unrelated
species, their genomes appear amazingly similar. For instance, as many as 99%
of the human genome is conserved across all mammals. Some human genes show
string homological across worms, plants and (deadly) bacteria.

The DNA of a species changes between generations by mutation. Errors
in self-replication, ionizing radiation or sexual recombination of two di�erent
strands result in a variety of possibilities. When looking at a genome of a
individual, one can identify couple of most common mutation.

Substitution The most common mutation is the change of a single nucleotide
base with another. For its transcription properties, a substitution can
either have no impact on the protein if the old and new codons code for
the same amino acid; it can change one amino acid to another; or worse, it
can prematurely signal the protein to stop building, causing the product
to be of limited, if any, function.

Insertion/deletion An insertion/deletion of a number of DNA bases into the
organism's DNA. Smaller ones can a�ect only a single gene, while larger
ones may delete or insert complete genes.
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Duplication A fragment of DNA can spontaneously duplicate itself during
recombination. Even though it is a rare occurrence, it has been postulated
that this mechanism has been the main driving force for increasing DNA
lengths that the organisms developed over time.

Inversion A fragment of DNA reverses itself during recombination. Slightly
more common than duplication, although much rarer than substitution,
insertion or deletion.

This concludes the minimum biological back-pinnings needed to understand
this thesis. The next section will present the main algorithm tool-set that is
most helpful with when dealing with biological problems and which will be used
when presenting the results.
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3 Algorithmic background

3.1 Su�x arrays

Su�x arrays are a fast and simple way to solve the following problem:

De�nition 1 (Multi-pattern substring query problem). Given a string S, im-
plement a data structure that can answer the following query:

i Query(T ): for a string T , �nd all occurrences of T as a substring of S.

Su�x arrays were introduced by Manber and Myers in [9] as a way to simplify
the formerly known su�x trees. Formally, a su�x array π(i) of a string S is an
array of indices such that the su�xes

Sπ(1)..|S|,

Sπ(2)..|S|,

...

Sπ(|S|)..|S|

are sorted. Here I denote the substring SaSa+1...Sb−1Sb as Sa..b. When the
array π is constructed, one can answer queries for some T in a simple manner
with the following algorithm.

Algorithm 1 Su�x array query when π is constructed

1: function Query(T )
2: l← 1, r ← |S|
3: for i in {1, 2, ..., |T |} do
4: binary search for the �rst occurrence k of the character Ti in
Sπ(k)+i−1 such that l ≤ k ≤ r

5: l← k
6: binary search for the last occurrence k of the character Ti in Sπ(k)+i−1

such that l ≤ k ≤ r
7: r ← k
8: end for
9: if l > r then

10: return empty
11: end if
12: return (πl, πl+1, ..., πr)
13: end function

The problem of constructing the array π itself is a much harder one. The
naive approach of lexicographically sorting the su�xes achieves anO(|S|2 log |S|)
running time. However, an improvement can be made by optimizing the com-
parator in that sorting function and achieve a running time of O(|S| log2 |S|).
The problem in the comparator function is the following: given two indicies
1 ≤ a 6= b ≤ |S|, is Sa..|S| lexicographically before or after Sb..|S|? This answer
can be solved via hashing with the following algorithm.

The only parts that was left out is the comparation between Sa..a+m ==
Sc..c+m by comparing hash(Sa..a+m) == hash(Sc..c+m). This problem is, how-
ever, widely studies and can be most easily solved using hashing functions. See
[10].
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Algorithm 2 Optimized su�x comparator

1: function Compare((a, b))
2: p← LongestCommonPre�x(a, b)
3: return compara Sa+p with Sb+p
4: end function
5: function LongestCommonPrefix(a, b)
6: l← 0
7: r ← |S| −max(a, b) + 1
8: while l < r do
9: m← d l+r2 e

10: if hash(Sa..a+m−1) == hash(Sb..b+m−1) then
11: l← m
12: else
13: r ← m− 1
14: end if
15: end while
16: end function

More sophisticated algorithms for the construction of su�x arrays are avail-
able. The method that was described above shows a (n log2 n) running time,
which is often fast enough in practice, and is easy to implement. Better algo-
rithms include the one described in [11] which features an minimal Θ(n) time
complexity, near linear space complexity and competitive practical value. Re-
cent work proposes an algorithm for updating a su�x array when new text has
been inserted that performs well in practice (although with a worst case still
O(n log n)), see [12]. For a more complete taxonomy of su�x array algorithms,
see [13].

3.2 Fenwick trees

A Fenwick tree is a classical data structure proposed in [14] that can improve
the running time of numerous algorithms by optimizing its inner-most loops.
Suppose one is working on an array A of integers and you need to �nd the sum∑b
i=a multiple times. The naive approach would be to sum up the number

one-by-one and it would yield a Θ(n) approach. Using a data structure like
the Fenwick tree, one can implement this operation in Θ(log n) and drastically
improve the running time. We �rst need to state the problem formally:

De�nition 2 (Summable array). Implement a data structure that can support
these two operations over an (virtual) array A of size n:

i Update(i, y): change the value of Ai to Ai + y (1 ≤ n; y arbitrary)

ii Query(b): report the sum
∑i=b
i=1Ai (1 ≤ b ≤ n).

Notice that the query operation reports only the pre�x sums, but one can
easily convert then into general contiguous sums by the identity

b∑
i=a

Ai =

b∑
i=1

Ai −
a−1∑
i=1

Ai, for 1 < a ≤ b ≤ n
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The Fenwick tree data structure will support both operations in Θ(log n) per
operation. The structures maintains an array of S �running sums� such that

Sk =
∑

k−hipot2(k)<n≤k

An

where hipot2(k) is de�ned as the largest power of 2 that evenly divides k, or
more formally max{2n|k is divisible by 2n, n ∈ Z}.

Figure 1: Diagram of responsibility for each element of S

The algorithm can be succinctly presented via recursion as follows, assuming
one can use the hipot2 function in O(1).

The performance guarantee of the Query function can be seen as every step
removes one active bit from the binary representation of i, while Update can be
argued in a similar way.

A �nal thing to note is that the summable Fenwick tree can be trivially
generalized to other operations obeying commutative and associative laws. For
instance, one can have the maximum Fenwick tree where the Query operation
reports the pre�x maximum. In other words, a Fenwick tree can be used to
solve the following problem:

De�nition 3 (Pre�x-max array). Implement a data structure that can support
these two operations over an (virtual) array A of size n:

i Update(i, y): change the value of Ai to y (1 ≤ n; y arbitrary)
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Algorithm 3 Fenwick tree operations for the summable array problem

1: function Update(i, y)
2: if i is beyond the end of the array then
3: return
4: end if
5: Si ← Si + y
6: Update(i+ hipot2(i), y)
7: end function
8: function Query(b)
9: if b == 0 then

10: return 0
11: end if
12: return Sb+ Query(b− hipot2(b))
13: end function

ii Query(b): report the value of maxi=bi=1Ai (1 ≤ b ≤ n).

Note however, that this operations can't be used to report maximums in an
interval because the max function isn't invertible.

3.3 Longest common subsequence (LCS)

Historically, the problem of aligning two DNA sequences was solved by (dense)
dynamic programming with high sensitivity and Θ(|X|·|Y |) running time, recent
proliferation of genomic data have rendered these approaches less useful. It
does not make much sense to run such an algorithm when |X| ≈ |Y | ≈ 108.
However, homologous regions in such sequences can often be recognized by less
sensitive, but faster approaches like the k-longest common subsequence that will
be introduced and used later in this thesis.

Formally, the problem is de�ned as �nding the maximum n such that the
there exists a common subsequence de�ned as below.

De�nition 4 (Common subsequence). Given two strings X and Y consider
two sets of distinct indices I = i1, i2, ..., in and J = j1, j2, ..., jn such that i1 <
i2 < ... < in; j1 < j2 < ... < jn and Xi(k) = Yj(k) for k = 1..n. Sets I and J
determine a common subsequence of X and Y whose length is equal to n.

The most famous method for calculating the LCS is an application of dy-
namic programming. Let dp(i, j) be the longest increasing subsequence for the
pre�xes X1..i and Y1..j . Then we have the following recursive relation.

dp(i, j) = max


0

dp(i− 1, j) i ≥ 1

dp(i, j − 1) j ≥ 1

dp(i− 1, j − 1) Xi = Yj

The longest common subsequence length is, of course, stored in dp(|X|, |Y |).
The time and memory complexity are of course Θ(|X| · |Y |).

Research working towards a faster or more memory e�cient approach for
solving the LCS problem has been intensive. I will single out two most signi�cant
improvements that have been found:
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Hirschberg's linear memory reconstruction algorithm While it is an easy
fact that the LCS can be calculated in O(|X| + |Y |) memory if the re-
sult doesn't have to be reconstructed, the existance of such memory e�-
cient reconstructive algorithm is a quite di�cult problem. Nevertheless,
Hirschberg proved in [15] that such an algorithm exists and is currently
widely used.

�Method of Four Russians� The only signi�cant time-reducing algorithm
found today is the �Four Russian Method� of block matrices with a time
complexity of O( n2

logn ) for two strings of length n[16].

A survey of more recent longest common subsequence approaches can be
seen in [17].

3.4 LCSk++

LCS+ + is a recent generalization of the LCS algorithm proposed in [1]. It can
be viewed as a measure of similarity between the strings X and Y . It is de�ned
as the longest common subsequence where each contiguous part is of length at
least k. A more formal de�nition follows.

De�nition 5 (k++ common subsequence). Consider a common subsequence
of strings X and Y . Such subsequence uniquely determines two sets of indices
I and J , I = i1, i2, ..., in and J = j1, j2, ..., jn such that i1 < i2 < ... < in; j1 <
j2 < ... < jn and Xi(k) = Yj(k) for k = 1..n. If both I and J can be partitioned
into families of sets of consecutive indices such that every set has a size of at
least k, this subsequence is called a k++ common subsequence.

Let's denote the longest k + + common subsequence between the strings X
and Y as LCSk + +(X,Y ). While the general problem of LCS in unfeasable
on genome-sized data, LCSk + + can be a reasonable choice if one chooses k
wisely. The naive method of computation of LCSk+ +(X,Y ) can be furnished
via the following recursive relation similar to the computation of LCS.

dp(i, j) = max


0
dp(i− 1, j) i ≥ 1
dp(i, j − 1) j ≥ 1
dp(i− q, j − q) + q for all q ≥ k s.t. Xi−q...i−1 = Yj−q...j−1

(1)

The 2nd and 3rd terms in the above formula correspond to inheriting the
LCSk++ value from previously computed values while the last term tries to
extend the LCSk++(X0...i−q−1, Y0...j−q−1) withXi−q...i−1 and Yj−q...j−1 if they
are equal. Those terms contribute |Xi−q...i−1| = |Yj−q...j−1| = q to the resulting
length. A direct implementation of the above idea leads to an algorithm with
time complexity O(nm ·min(n,m)) where |X| = n and |Y | = m.
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3.4.1 An e�cient algorithm for the LCSk + + computation

De�nition 6 (Match pair5). For a given strings X, Y and integer k ≥ 1 we
de�ne:

kMatch(i, j) =

{
1 ifXi+f = Yj+f , for every 0 ≤ f ≤ k − 1
0 otherwise

(2)

If kMatch(i,j)=1, we call (i,j) a match pair. In other words, kMatch(i,j)=1
when the substring of A starting at i and having an length of exactly k is equal
to the substring of B starting at j with the same length. (i, j) is also called the
start and (i+ k, j + k) is called the end of the match pair.

For every match pair P = (iP , jP ) we use dynamic programming to com-
pute dp(P ) = LCSk++(X0...iP+k−1, Y0...jP+k−1), which represents the value of
LCSk++ ending with P . The following de�nitions will be useful:

De�nition 7 (Precedence of match pairs). Let P=(iP , jP ) and G=(iG, jG) be
k-match pairs. Then G precedes P if iG + k ≤ iP and jG + k ≤ jP . In other
words, G precedes P if the end of G is on the upper left side of the start of P
in the dynamic programming table (see Figure 2).

De�nition 8 (Continuation of match pairs). Let P=(iP , jP ) and G=(iG, jG)
be k-match pairs. Then P continues G if iP − jP = iG − jG (i.e. they are on
the same primary diagonal) and iP − iG = 1 (P is only one down-right position
from G, see Figure 2).

C T A T A G A G T A $

A

T

T

A

T

G

$

a

a

b

b

c

cd

d

e

e

Figure 2: k = 2; strings X = ATTATG and Y = CTATAGAGTA construct
exactly �ve 2-match pairs denoted a to e. Starts are represented by circles, ends
are represented by squares. The following holds: �b continues a�, �c precedes e�,
while the following does not hold: �a precedes b�, �c precedes d�, �a continues
b�.

We can express the dp(P ) = LCSk++(X0...iP+k−1, Y0...jP+k−1) via the fol-

5Original de�nition given in [18].
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lowing formula which will be the basis for the e�cient algorithm:

dp(P ) = max

 k
maxG dp(G) + k over all G preceding P
dp(G) + 1 if P continues G

(3)

In other words, a k-match pair P can either start its own k-common subsequence,
extend a k-common subsequence ending with a match G such that G precedes
P or extend a k-common subsequence ending with a match pair G such that P
continues G. In the second case the k-common sequence is enlarged by k (e.g.
c→ e in �gure 2), while in the latter it's enlarged by 1 (e.g. a→ b in �gure 2).

Algorithm 4 E�cient LCSk++ computation
1: MaxColDp← 1D array �lled with n zeros
2: MatchPairs← �nd all k-match pairs between X and Y
3: events ← all starts and ends of MatchPairs sorted in row-major order, if

some start S = (iS , jS) and some end E = (iE , jE) share the same indices,
E should come �rst

4: for all event ∈ events do
5: if event is a start P = (iP , jP ) then
6: dp(P ) ← k +maxx∈0...jP MaxColDp(x)
7: else if event is an end P = (iP + k, jP + k) then
8: if ∃G s.t. P continues G then
9: dp(P )← max{dp(P ), dp(G) + 1}

10: end if
11: MaxColDp(jP + k)← max {MaxColDp(jP + k), dp(P )}
12: end if
13: end for
14: return maxP dp(P )

Algorithm 4 starts by extracting all of the r match pairs on line 2. This
can be done in two ways: one can employ a su�x array in the exact same
manner as in [19] to get the time complexity of O(n + m + r). However, as k
is small in practice6 we can �nd all match pairs using a simple hash table in
O(n+m+ kr) = O(n+m+ r).

Line 3 creates events and sorts them, which ensures the correctness of the
sweeping algorithm on lines 4-14. This can be accomplished in O(r log r) using
a standard comparison based sorting algorithm. Line 8 can be implemented
as a binary search over the events array. If MaxColDp is implemented as
a Fenwick tree [14], the operations on lines 6 and 11 have a cost of O(log n)
which implies that the sweep algorithm runs in O(r log n). Overall complexity
is O(m + n + r log r)7. The memory complexity is O(n + m + r) because we
only need the space to save the match pairs and theMaxColDp structure. If we
would like to reconstruct the sequence, the dp array has to store O(1) additional
information per match pair: a pointer to the previous match pair in case some
other match pair G preceded P or P continued some G in the optimal solution.

6Usually k will be small enough such that every k-length substring can be perfectly hashed
using 64 bits.

7This is assuming that r is at least as big as n. In the other case the correct complexity is
O(m+ n+ r log r + r logn).
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3.5 Smith-Waterman algorithm

The problem of (local) sequence alignment was �rst posed and solved by T. F.
Smith and M. S. Waterman in 1981 (see [20]). The problem can be formally
stated as follows:

De�nition 9 (Alignment). Given two DNA sequences X, Y over an alphabet Σ,
their alignment is a pair of equal-length strings (A,B) over an alphabet Σ∪{′−′}
such that X is a subsequence of A and Y is a subsequence of B.

De�nition 10 (Global sequence alignment problem). Given two DNA sequences
X, Y over an alphabet Σ and a scoring function δ : Σ∪ {′−′}×Σ∪ {′−′} → R,
�nd the alignment of (A,B) that maximizes

∑
i δ(Ai, Bi).

De�nition 11 (Local sequence alignment problem). Given two DNA sequences
X and Y , �nd a subsequence A of X and B of Y to maximize the global sequence
alignment value between them.

The algorithm Smith and Waterman proposed for this problem relied on a
clever dynamic programming application not unlike the longest common subse-
quence problem. Let dp(i, j) be the maximum local sequence alignment of the
pre�xes X1..i and Y1..j . Then we can calculate the optimal local alignment of
the entire sequence by the following recursion.

dp(i, j) = max


0

dp(i− 1, j) + δ(Xi,−) i ≥ 1

dp(i, j − 1) + δ(−, Yj) j ≥ 1

dp(i− 1, j − 1) + δ(Xi, Yj) i, j ≥ 1

The Smith-Waterman algorithm for local sequence alignment has often been
described as the most sensitive of all the alignment algorithms. Its drawback,
however, is its unavoidable Θ(|X| · |Y |) running time. This led to the develop-
ment of GPU aware alignment algorithms to try to mitigate the running time
(see [21]), albeit the algorithm will probably never be able to align chromosome-
sized sequences.
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4 A new global sequence alignment tool

4.1 Problem statement

The problem of global sequence alignment traditionally included running expen-
sive Θ(n2) algorithms that are infeasible on genome size data. The approach
to global alignment taken in this thesis is akin to the one taken by the popular
tool MUMmer (see [22]): instead of calculating the whole genome alignment
that will make sense on the homologous regions and won't make any sense on
the regions that aren't related by function or lineage, we will try to identify only
the homologous regions.

To put this into perspective, we can look at �gure 3 which shows the famous
alignment between the �rst human (Homo Sapiens) chromosome and the entire
genome of a mouse (Mus Musculus). While there is certainly many important
homologous regions present, the area between the regions seem not to carry any
signi�cant information.

Figure 3: Homologous regions between the �rst human chromosome and the
entire mouse genome [23]

De�nition 12 (Whole sequence alignment). Given two DNA strings X and Y ,
�nd all the signi�cant homologous regions between those two strings.
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As the �homologous regions� themselves are a fuzzy term that is di�cult to
quantify, I will measure my success ratio in correspondence to the regions found
by other researchers such as the one on �gure 3.

4.2 Alignment algorithm

The main algorithmic overview can be relatively easily stated once the ground-
work of section 3 have been laid.

The �rst requirement on our algorithm is to detect both forward and re-
verse matches. This will be dealt in a straightforward manner by running the
algorithm in two separate instances: once for the forward run, another time for
the reverse. This is arguably the approach taken by both MUMmer [22] and
BLASR [24]. Assuming we are given two DNA strings X and Y , the algorithm
proceeds as follows:

1. Construct a su�x array of the string Y .

2. For each i in 1, 2, ..., |X| calculate the longest common pre�x of Xi..|X|
that occurs within Y , let it's length be L. Discard this match if L < k,
where k is an �xed parameter, otherwise �nd all occurrences of the string
Xi...i+L−2 within Y .

3. Between all the matches found in the last step, calculate the best sparse
Smith-Waterman path. This step will be described in detail in the next
section.

4. Find the highest scoring value in the sparse Smith-Waterman matrix, re-
construct its path, remove it and repeat this step. Repeat until there is a
sharp drop in the quality of the paths.

Notice that in step 2 we are looking for all occurrences of the pre�x of length
L − 1 and not L. The reason for this is that the last character can sometimes
be the result of pure chance, so this enhances the sensitivity of the algorithm.
This move has been inspired by BLASR that uses a very similar technique.

Another thing to keep in mind is the coy parameter k that determines the
minimum length of a valid match. This parameter is paramount to the speed
and sensitivity of the tool and will be analyzed in one of the following sections.

4.3 Sparse Smith-Waterman approximation

The centerpiece of the tool is a modi�ed sparse Smith-Waterman dynamic pro-
gramming algorithm. Its input is an array of exact match pairs from the su�x
array query stage of the algorithm and its output is an approximation of the
Smith-Waterman score for every match pair in the input.

Its formal de�nition can somewhat similar as for the LCSk + + problem,
but is given here for completeness.

De�nition 13 (Match pair). Given a string X, Y , a match pair is a triplet
(a, b, l) such that Xa..a+l−1 == Yb..b+l−1.

De�nition 14 (Match pair sequence value). Given an ordered list of match
pairs {(a1, b1, l1), (a2, b2, l2), ..., (an, bn, ln)} such that ai+ li ≤ ai+1 and bi+ li ≤
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bi+1 whenever i and i + 1 are de�ned, one can assign a value to the list by
computing

E ·
n∑
i=1

li +N ·
n−1∑
i=1

(bi+1 − bi − li) + (ai+1 − ai − li).

This value is the match pair sequence value. The values N < 0 and E > 0 are
algorithm parameters.

The crux of the upper de�nition lies in the fact that the match pair sequence
value approximates the Smith-Waterman value for sparse matrices. To be more
precise, suppose that we are given a special Smith-Waterman scoring function
δ : Σ ∪ {′−′} × Σ ∪ {′−′} → R function such that

δ(a, b) =


E a = b

N a = − ∨ b = −
2N otherwise

and that all matches between X and Y have been registered in the match
pairs list. Then the biggest possible match pair sequence value is the same
as the Smith-Waterman optimal local sequence alignment value. While this
comparison may seem overly overly optimistic as the proposed δ function is
Very special, one can still make a claim that this function will still be at most
constant times worse than any other, �practical�, functions, hence preserving
the optimality ratio for arbitrary long sequences. The other objection to this
result is that usually not all of the possible matches reside in the acquired list,
but only the ones that are longer than a parameter k. This, however, is a minor
setback as short matches are more often noise than signal. On the other hand,
setting k can greatly reduce the running time.

We can �nally de�ne our approximation of the Smith-Waterman algorithm
with the following problem.

De�nition 15 (Optimal match pair sequence problem). For each match pair
P in the input list, compute the largest match pair sequence value one can get
with any sequence ending with P .

The question how to e�ciently solve this problem remains. Similarly as
in the LCSk + +, we turn to sparse dynamic programming. The following
de�nition will make the description a bit more legible.

De�nition 16 (Precedence of match pairs). Let P = (iP , jP , lP ) and G =
(iG, jG, lG) be match pairs. Then P precedes G if iP +lP ≤ iG and jP +lP ≤ jG.
In other words, if we sketch each match pair with the two dimensional line
(i+ τ, j + τ) where 0 ≤ τ < l), then P will be strictly up and to the left of G.

Let's de�ne dp(P ) as the optimal match pair sequence value ending with
P . We can then state a recursive relation that will lay the groundwork for an
e�cient solution.

dp(P ) = max

{
E · lP
N · ((iP − iG − lG) + (jP − jG − lG)) + E · lP G precedes P
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The former equation can, however, be rewritten in the following manner:

dp(P ) = max

{
E · lP
(NiP +NjP + ElP )−N(iG + jG + 2lG) G precedes P.

Notice that the left hand side part of the last equation depends on only P ,
while the right hand side depends on only G. Therefore we can uncouple the
entire equation into if we divide the match pairs into �starts� (iP , jP ) and ends
(iP + lP , jP + lP ). The full algorithm follows.

Algorithm 5 E�cient optimal match pair sequence problem

1: function SparseLongestMatchSequence((MatchPairs))
2: MaxColDp ← Fenwick max-array initialized with n −∞
3: events← all starts and ends of MatchPairs sorted in row-major order,

if some start S = (iS , jS) and some end E = (iE , jE) share the same indices,
E should come �rst

4: for all event ∈ events do
5: if event is a start P = (iP , jP ) then
6: bestG ← MaxColDp.Query(jP )
7: dp(P )← bestG+NiP +NjP + ElP
8: else if event is an end P = (iP + k, jP + k) then
9: MaxColDp.Update(jP + lP , dp(P )−N(iP + jP + 2lP ))

10: end if
11: end for
12: return dp(P ), ∀P
13: end function

Before I get to the results, the next section will detail the repercussions
involving the choice of the critical parameter k.

4.4 Theoretical background

As was said, all match pairs shorter than a �xed k will be discarded. If one
chooses k too small, a proliferation of unimportant match pairs will occur and
running times will deteriorate exponentially. On the other hand, if one chooses k
too large, no matches will be found. This section will try to answer the question
of picking k just large enough for the algorithms to be feasible on genome-scale
data.

We model a pair of non-homologous strings X(n) and Y (n) of length n as
random strings over the alphabet {A,C,G, T} where each character has a known
and mutually independent probability of appearing.Speci�cally, let X and Y be
either non-homologous or homologous pair of strings of length m,n constructed
over the alphabet {A,C,G, T} with a priori distributions pA, pC , pG, pT . Then
S := E[Xi = Yj ] = (p2A + p2C + p2G + p2T ) for all i 6= j (this restriction is needed
to cover both models with this proof). Expected number of match pairs then
equals:
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E[r] = E[# of pairs (i,j) such that Xi..i+k−1 = Yj..j+k−1]

= E

n−k∑
i=0

m−k∑
j=0

1[Xi..i+k−1 = Yj..j+k−1]


= E

n−k∑
i=0

m−k∑
j=0

1[i = j]1[Xi..i+k−1 = Yj..j+k−1]

 +

E

n−k∑
i=0

m−k∑
j=0

1[i 6= j]1[Xi..i+k−1 = Yj..j+k−1]


= O(n+m) +

n−k∑
i=0

m−k∑
j=0

E [1[i 6= j]1[Xi..i+k−1 = Yj..j+k−1]]

= O(n+m+ nmSk).

Corollary 1. By choosing kfast = log1/S
nm
n+m it follows that E[r] = O(n+m),

so the expected complexity of the whole algorithm is O((n+m) log(n+m)).

Corollary 2. For uniformly distributed alphabets, the expected number of match
pairs drops as the size of the alphabet increases. That implies that the bigger
the alphabet is, the smaller k is needed for the LCSk++ computation to run
e�ciently.

This results proves the e�ciency of the method provided one chooses k care-
fully.
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5 Results

The results are obtained by testing the tool on several problem instances such
as

• Helicobacter pylori (two strains)

• Human chromosome 1 vs. mouse chromosome 4

• Randomly generated data of various sizes.

As a quality check, I will measure the similarity between the new tool and
MUMmer generated plots. The following �gure shows a global alignment be-
tween H. pylori, strain 26695, and H. pylori, strain J99.

(a) H. pylori 26695 vs J99: sparse match sequences

(b) H. pylori 26695 vs J99: MUMmer

As seen from the �gures, the quality of the uncovered pictures is quite similar.
This examples was a moderately small 250KB × 250KB alignment, a scale
feasible even for full Smith-Waterman iterations. The next example, however,
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features the entire human chromosome 1 vs. the entire mouse chromosome 4.
This corresponds to aligning 250MB × 150MB, a scale unfeasible by ordinary
methods.

(a) Human chromosome 1 vs. mouse chromosome 4: sparse match
sequences

(b) Human chromosome 1 vs. mouse chromosome 4: MUMmer

This example shows a di�erent story the the previous one. The MUMmer
output is cluttered by random noise in the signal, while the new algorithm is
much more resilient to spurious data. A thing to note is that setting MUMmer
parameters, even manually, helped little in mitigating the clutter that can be
seen.

Another critical factor that has been neglected so far is the time complex-
ity of the algorithm. Tested together were MUMmer version 3; BLASR; and
the new algorithm. Table 2 shows the corresponding running times of these
algorithms on various input sequences.
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Input Size new tool time MUMmer time BLASR time
H. pylori 26997 vs J99 250KB × 250KB < 1s < 1s 8s
Randomly generated 1MB × 1MB < 1s < 1s 28s
Randomly generated 10MB × 10MB 6s 9s 6m 14s
Homo S. 1 vs. Mus M. 4 250MB × 150KB 3m 7s 7m 4s didn't �nish
Randomly generated 1GB × 1GB 11m 50s 13m 41s N/A

Table 2: Running times of the new algorithm, BLASR and MUMmer on various
input sequences

6 Conclusion

To sum up, I have developed a new whole genome sequence alignment tool that
is blazing fast, can handle huge amounts of data, and has the sensitivity to
detect large homologous regions across di�erent species.

In particular, the tool has shown far better e�ciency performance than
BLASR and comparable e�ciency as MUMmer. On the other hand, it lacks
the sensitivity of other bioinformatics tools.

For future work, I would recommend improving the sensitivity of tool via
nonexact match searching and seed extension techniques similar to BLAST.
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Alat za globalno poravnanje sekvenci

Saºetak

Ovaj rad predlaºe bioinformati£ki alat za poravnavanje cijelog genoma. Dano
je detaljno obja²njenje algoritma te usporedba s drugim renomiranim alatima
koji rje²avaju sli£ni problem poput MUMmer-a i BLASR-a. Dobiveni algoritam
se pokazao kao vrlo e�kasan, usporediv s alatom MUMmer, iako uz manju mjeru
osjetljivosti.

Klju£ne rije£i: bioinformatika, poravnanje sekvenci, su�ksni nizovi, LCSk++,
rijetko dinami£ko programiranje

Global sequence alignment tool

Abstract

This thesis proposes a bioinformatics tool that can be used for whole genome
alignment. A detailed description of the algorithm is provided and compared to
well-established tools like MUMmer and BLASR. The algorithm proves to be
highly e�cient, comparable to MUMmer, although with lower sensitivity.

Keywords: bioinformatics, sequence alignment, su�x arrays, LCSk++, sparse
dynamic programming
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