
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

MASTER THESIS No. 1123

A reduced gene database for
precision species detection

Dorija Humski

Zagreb, June 2015.

Hvala mom mentoru na podršći i strpljenju zadnjih par godina.

I would like to thank Professor Bernard Moret for the help, advices and support.

But the most for accepting me in the LCBB family.

Hvala mojoj obitelji na beskrajnoj podršci i pomoći svih ovih godina.

iii

CONTENTS

1. Introduction 1

2. Materials and Methods 3
2.1. Algorithms for Clustering data . 3

2.1.1. Hierarchical clustering . 4

2.1.2. Partitional clustering . 5

2.2. Progressive Multiple alignment . 6

2.3. HMMs profiles . 7

3. Implementation 9
3.1. Single-link clustering . 9

3.2. Hierarchical clustering and multiple alignment 12

3.3. Clustering using UCLUST . 15

3.4. Final design . 17

3.4.1. Example . 19

4. Results 20

5. Conclusion 24

Bibliography 26

iv

1. Introduction

Genome sequencing is becoming cheaper, faster and better, and as a result a huge

amount of sequences are already produced. Whilst having a huge amount of data

improves accuracy of data analysis, the problem comes, however, when there is a need

to produce something quickly.

From the observations of the databases, it has been noticed that some sequences in

the database are similar to each other. The similarity between sequences, in the sense

of alignments against other sequences, often implies a redundancy. While the redun-

dancy implies increasing in a computational cost and decreasing a speed of searching

a sequence in the database. The idea of excluding redundant sequences has been born,

but the problem which has left was "How?".

How to keep accuracy at the same level, but increase speed of the operations using

database? The answer on the question was to create a reduced database. The reduced

database is modeled in a way that at first it gives us information only about significant

sequences, and all the other sequences are hidden behind their representative. The way

of creating a database like this, is a process of a clustering.

To produce a reduced database for the purpose of the faster identification of the

species, we have applied a couple of approaches. The main idea was to model a

database as a hierarchical clusters, hence we have applied two different approaches

of hierachical clustering. The issues we came to were how to make a good clusters and

what should be a representative of the cluster. The third approach involves partitional

clustering, where the sequences from the database are divided into partitions accord-

ing to the similarity. The issues for partitional clustering were the same as the ones for

hierarchical clustering. Since each approach implies different model of the database,

we associate to them different modules for an identification of the species.

The thesis is organized as follows: Chapter 2 describs methods and algorithms

important for understanding the other parts of the thesis. Chapter 3 is divided into

four sections, the first tree sections describs different approaches while trying to solve

a problem, while the four section contains the details of the final design. Chapter 4

1

consists of results obtained while testing our approaches and Chapter 5 highlights the

conclusions of our work.

2

2. Materials and Methods

Since Implementation chapter describes algorithms based on clustering methods, pro-

gressive multiple alignment and HMM profiles, understanding of these topics is rel-

evant for understanding the rest of the thesis. Hence this chapter contains a short

description of the topics.

2.1. Algorithms for Clustering data

Clustering is the process of classifying objects into subsets that have a meaning in the

context of a particular problem (Anil K. Jain, 1988). Classifying should be done in

such a way that objects in one cluster are more similar to each other than to objects in

other clusters. The goal of the clustering is to reduce the amount of data by grouping

similar data together. The clustering is imposed on a finite set of objects, where the

relationship between objects is known. The relationship between objects should be

a measurable value which represents a distance or proximity. A matrix representing

such a relationship is typically called Proximity matrix. Besides objects, the proximity

matrix is the only input to a clustering algorithm.

Algorithms for clustering can be divisive or agglomerative. Divisive algorithm

starts with all objects in one cluster and continues with subdividing existing clusters

into smaller pieces according to the proximity matrix. Agglomerative algorithm re-

verses the process by starting with each object divided into its own cluster and contin-

ues with merging existing clusters into larger pieces.

According to the type of structure imposed on the data, clustering methods are

divided into two categories:

– Hierarchical clustering

– Partitional clustering

The hierarchical clustering is a nested sequence of partitions, whereas the parti-

tional clustering is a single partition.

3

2.1.1. Hierarchical clustering

Figure 2.1: Example of hierarchical clustering

The hierarchical clustering is a sequence of partitions in which each partition is

nested into the next partition in the sequence. An example of hierarchical clustering is

shown in figure 2.1. A tree structure used for the representation is a dendrogram, and

each layer in the dendrogram represents one cluster. The dendrogram enables us to see

how objects are being merged into clusters or split at successive levels of proximity.

Two specific hierarchical clustering methods are called single-link and complete-link

methods (Anil K. Jain, 1988). The difference between the single-link and the complete-

link can be seen on the problem: suppose that objects {x1, x2, ..., xn} are divided into

clusters {C1, C2, C3, ..., Cm} and that the next step in clustering is to merge clusters

Ci and Cj . The relationship between objects is represented as a distance, d(x, y).

Depending on the method which is used for clustering, one of the two statements is

true:

– Single-link: min
x∈Ci,y∈Cj

{d(x, y)} = min
r 6=s
{ min
x∈Cr,y∈Cs

{d(x, y)}}

– Complete-link: max
x∈Ci,y∈Cj

{d(x, y)} = min
r 6=s
{ max
x∈Cr,y∈Cs

{d(x, y)}}

Where r, s ∈ 1, 2, ...,m.

According to those statements, the single-link method is also known as ”minimum”

method, while the complete-link method is known as ”maximum” method.

One possible algorithm for the single-link method is ”Graph theory algorithm for

single-link clustering” (Anil K. Jain, 1988). The algorithm is given in Algorithm 1.

The relationship between objects is represented by distance, thus the algorithm use a

dissimilarity matrix as an input. It is the agglomerative algorithm based on the mini-

mum spanning tree (MST).

4

Data: Objects, dissimilarity matrix

1. Place each object in its own cluster

2. Create a weighted graph where nodes are clusters. Weight is dissimilarity

between two nodes (clusters)

3. Find MST on the weighted graph

4. Merge two clusters connected by the MST edge with smallest the weight

5. Replace the weight of the edge selected in step 4 by a weight larger than the

largest dissimilarity

Repeat steps 4. and 5. until all objects are in one cluster
Algorithm 1: Graph theory algorithm for single-link clustering

2.1.2. Partitional clustering

The main goal of partitional clustering is to partition the objects into K clusters in such

a way that objects in a cluster are more similar to each other than to objects in different

clusters. A value of K may or may not be specified (Anil K. Jain, 1988). Clustering is

done according to a defined clustering criterion. The criterion can be local or global.

The local criterion uses information of a local structure of the data and utilizes that

information in a clustering process. The global criterion uses information from pro-

totypes which represent each cluster, classifying objects according to the most similar

prototypes. The criterion is highly related to a problem and must be simple enough

due to the computational cost but yet complex enough to reflects data structures.

Many clustering methods are designed for a variety of problems, including cluster-

ing of nucleotides or protein sequences, and one of the possible algorithms is UCLUST,

described below.

UCLUST

UCLUST is a greedy algorithm designed for clustering nucleotide or protein sequences

(RC, 2010). The algorithm is partitional, using a global criterion and does not have a

specified number of clusters. A prototype of the cluster is a sequence from a dataset,

which is called a centroid. For a given threshold, T, UCLUST is designed to find a set

of clusters such that:

– All centroids have similarity < T to each other, and

– All member sequences have similarity >= T to a centroid.

Similarities between sequences are defined as an identity between those sequences.

To calculate the identity, UCLUST uses global alignment.

5

The algorithm can be stated as follows. Given n sequences, process the sequences

one by one in the order they appear. Match each sequence to all existing centroids. If

an identity between a sequence and some of the centroids is higher than a threshold

value T , the sequence is assigned to that cluster, otherwise the sequence becomes the

centroid of a new cluster.

Since the sequences are processed one by one in the order they appear, the order

plays crucial role in defining a cluster. This means that sequences should be ordered

in such a way that the most appropriate centroids tend to appear earlier in the file (RC,

2010). One way to do this is to sort sequences by length, although the best order

depends on the application.

2.2. Progressive Multiple alignment

Multiple sequence alignment (MSA) is the central technique for inferring biological

information from a set of sequences. The MSA involves an alignment of more than

two sequences and aims to find equivalent positions across an aligned query set of

the sequences (V. et al., 2003). The MSA can provide a wealth of information about

structure-function relationships within a set of the sequences.

MSA can be made using Progressive algorithms. Progressive algorithms are based

on three basic steps:

1. Calculating a matrix of pairwise distances based on pairwise alignments between

the sequences

2. Use the pairwise distance matrix and build a ”guide tree”

3. Use the ”guide tree” to guide multiple alignment

Progressive algorithms build the multiple alignment by the iteration of pairwise

alignment in the internal nodes of a predefined guide tree (A. and N., 205). The

alignment progresses from the terminal nodes toward the root of tree. The order of

alignment is derived from pairwise alignment scores and a calculation of the ”guide

tree”. The calculation of the ”guide tree” is a process of hierarchical clustering of

the sequences based on their pairwise alignment score. The result of the hierarchical

clustering is a dendrogram, referred to as the ”guide tree”. The resulting branch order

of the ”guide tree” is then followed to align the sequences, such that the most similar

sequences are aligned first, and gradually the more distant sequences are included in

the growing MSA (V. et al., 2003).

6

Various programs are based upon progressive alignment strategy. They vary ac-

cording to how they calculate pairwise alignment, building the ”guide tree” and iterat-

ing through the ”guide tree” to produce multiple alignments.

2.3. HMMs profiles

A profile is a description of the consensus of the multiple sequence alignment. Profile

Hidden Markov Models (HMMs) turn a multiple sequence alignment into a position-

specific scoring system suitable for searching databases (Eddy, 1998). Profile HMMs

have several advantages over standard profiles. While standard profiles use the raw

frequency observed from the data to assign the score for the residue, HMMs apply a

statistical method. Beside the fact of having a formal probabilistic basis, HMMs pro-

files have a consistent theory behind a gap and insertion scores, in contrast to standard

profile methods which use heuristic methods (Profile HMM Analysis).

To build HMMs profiles, for each consensus column of multiple alignment, three

states should be created: ”match”, ”insert” and ”delete” state. A ”match” state models

the distribution of allowed residues in the column. An ”insert” state allows insertion of

one or more residues between the column and the consecutive column, while ”delete”

state is used for deleting the consensus residue.

Two types of probabilities are associated with HMMs profiles: transition probabil-

ity and emission probability. Transition probabilities describe transition from one state

to another, while emission probabilities are associated with a particular state (particular

”match” state).

Figure 2.2: HMM profiles

To give a better insight, a simplified HMM profile can be seen on the figure 2.2. A

consensus of the MSA consists of 4 columns, and each of them is represented by three

states.

7

Aligning of a new sequence to a profile HMM is done by finding the most probable

path that the sequence may take through the model, using the transition and emissions

probabilities to score each possible path.

8

3. Implementation

For the purpose of producing a reduced database, we have applied three different ap-

proaches. The first two are based on a hierarchical clustering, while the third one is a

partitional clustering solution. Approaches are named according to the methods and al-

gorithms they use, thus there are: Single-link clustering, Hierarchical clustering using

multiple alignment and Clustering using UCLUST. This chapter is designed to provide

an overview of the implemented methods. It also gives advantages and disadvantages

of the methods and the reason why some of the methods are not appropriate.

3.1. Single-link clustering

The first approach in solving a problem is to incorporate a pairwise alignment and a

single-link clustering. The main idea behind the approach is to determine a proxim-

ity matrix using the pairwise alignment and create a dendrogram with the single-link

clustering algorithm. Each node in the dendrogram is represented by a profile of the

sequences which belong to that node. To identify a new sequence, the dendrogram is

searched from the root to leaves. Since each node in the dendrogram is represented by

a profile, a score between the node and the new sequence is a matching score between

the profile and the sequence. Searching could be optimized by using a greedy algo-

rithm. The algorithm would test a matching score from the left and right branch of the

current node, and choose the side where the score is higher, but only if the difference

between those two scores is large enough. If the difference is not significantly large

enough, the algorithm continues searching the both sides.

To determine the proximity matrix, two methods were tested: Smith-Waterman and

BLAST (Bet, 2008). Emboss-water is used as an implementation of Smith-Waterman

algorithm (EMBOSS Smith-Waterman). The main goal was to prove that the BLAST

score is sufficient enough for clustering and that there is no need to use the slower

Smith-Waterman (SW) method. To be able to compare SW score and BLAST score,

scores must be normalized and scaled to the range [0, 1]. BLAST bit-score is already

9

(a) Smith-Waterman score (b) BLAST score

Figure 3.1: Pairwise alignment scores

normalized, but not scaled. Scaling is done by using the expression:

scaled_bit_score(Q,S) =
bit_score(Q,S)

max
q∈database

{bit_score(q, S)}

Since the SW score is not normalized nor scaled, normalization is done by dividing the

score with the length of alignment and scaling by dividing with the ”matching” value.

The expression is:

SW_score(Q,S) =
SW_score(Q,S)

alignment_length ∗MATCHING_V ALUE

The testing was made on different datasets and the results varied, however general

conclusion can be made. The figure 3.1 shows the results for 150 sequences, where

they were aligned to each other with BLAST and SW. On the horizontal axis are shown

pairs of the sequences (an index associated with the pair), while on the vertical axis

are shown corresponding similarity scores. The similarity scores were normalized and

scaled. While in the figure 3.1a there is an increasing trend, in the figure 3.1b function

shows growth even though it is not continuous. The reason is that BLAST would

marked an alignment between some sequences as not significant, according to the E-

value. The conclusion was that the BLAST score is sufficient enough for clustering.

Once the proximity matrix has been made, the clustering algorithm can be ap-

plied to create a dendrogram. For clustering the algorithm Graph theory algorithm for

single-link clustering is used. The algorithm is described in Chapter 2.1.1. Since the

algorithm is suitable for dissimilarities, the proximity matrix is converted into a dis-

similarity matrix by replacing each value aij into aij = 1 − aij . A clustering process

10

Figure 3.2: Weighted graph and the MST

for the small dataset of 10 sequences is shown in figures 3.2 and 3.3. The weighted

graph is illustrated in the figure 3.2, a node represents the sequence, and an edge repre-

sents dissimilarity between sequences. Bold edges are part of the MST. An associated

dendrogram is shown in the figure 3.3.

Running on the different datasets, with different dissimilarity matrices, a dendro-

gram tents to be very unbalanced. An unbalanced dendrogram means that each level

left/right branch would be represented by a profile made from only one sequence.

While searching for a new sequence, we still have to go through all the sequences

from the dataset. Since our goal is to reduce the database, in a way that while search-

ing we do not have to go through all the sequences from the database. Therefore, we

11

Figure 3.3: Dendrogram

concluded that the single-link approach is not suitable for clustering sequences.

3.2. Hierarchical clustering and multiple alignment

The first approach was not appropriate for our problem, so we decided to move on in a

different direction. Trying to involve State-of-the-Art algorithms as much as possible

sounds promising. Since progressive multiple alignment algorithms use clusters of the

sequences while producing an alignment, using these types of algorithms presents a

possible solution to our problem.

The idea can be stated as follows:

1. Produce multiple alignment on the sequences.

2. Get the guide tree and all internal alignments.

3. From the internal alignments build HMM profiles.

4. Create a tree in which nodes are represented by HMM profiles, as a base using

the guide tree.

For the purpose of an alignment we use Clustal Omega (F. et al., 2011). Clustal

Omega is chosen since it is suitable for medium-large alignments and provides many

options. By default it creates a distance matrix and a guide tree, but as an input it also

accepts them. An option to accept the distance matrix is convenient in the case when

we want to control a pairwise alignment. If we can find a better way to create a guide

tree, but prefer that Clustal Omega makes alignments for us, there is an option to read

the given guide tree.

12

HMM profiles are created using a package HMMER (Eddy and Wheeler, 2015).

HMMER is used for a biological sequence analysis using profile hidden Markov mod-

els. We use options hmmbuild, hmmpress and hmmsearch. Hmmbuild constructs

profile HMMs from multiple sequence alignment(s). Hmmpress prepares HMMs for

hmmsearch, while hmmsearch searches profiles against a sequence database.

Data: Guide tree, profiles, parameter T, a new sequence

Result: List of potential sequences

Read the guide tree - guide tree contains indexes to the real HMM profiles;

node =Root;

Procedure {

if node is a leaf then
put in the List of potential sequences

else
Read profile of the left child of the node;

scoreleft = score of matching the sequence to that profile;

Read profile of the right child of the node;

scoreright = score of matching the sequence to that profile;

if (abs(scoreleft − scoreright) > T) then
if (scoreleft > scoreright) then

node = left;

else
node =right;

end
go to the beginning of the procedure;

else
node = left;

go to the beginning of the procedure;

node = right;

go to the beginning of the procedure;
end

end
}

Algorithm 2: Searching for a sequence in the database

A new database contains HMM profiles for each node in the guide tree and guide

tree with indexes to the HMM profiles. The procedure for finding a new sequence in

the new database is presented in Algorithm 2. Parameter T states the threshold while

choosing a side. For a smaller T , the procedure is more accurate since it goes through

13

(a) Single-link clustering (b) Hierarchical clustering

Figure 3.4: Dendrograms

a larger part of the tree, but the cost is time.

To prove that the second approach gives a better results than the first one, we can

compare their dendrograms. The two dendrograms, shown on the figure 3.4, are built

using single-link clustering (3.4a) and hierarchical clustering (3.4b). Algorithms were

run on the dataset of 150 sequences. The unbalanced dendrogram in figure 3.4a in-

creases the searching time of a new sequence.

The approach were tested on a set of bacterial coding sequences (CDS). In the table

3.1 are shown results. Since the method is exhaustive for a bigger dataset, we ran it

on the dataset of 150 sequences and the dataset of 1500 sequences. Parameter T was

equal to 100. The method shows high accuracy. We ran it on 10 different samples of

datasets sizes 150 sequences and 1500 sequences, and the results were the same.

Table 3.1: Hierarchical clustering and multiple alignment

Dataset size Accuracy Time(s)

150 100% 0.14026

1500 100% 138.0

With the limitations of multiple alignment algorithms comes limitations of our ap-

proach. Some algorithms have a limited size of accepted datasets. If there is the

14

possibility to work with larger datasets, the problem then is accuracy. A solution for

this is preprocessing, where the sequences first would be clustered by using some of

the partitional clustering algorithms.

3.3. Clustering using UCLUST

Since the main part of our job is to reduce a dataset, our focus was to find the most

appropriate solution to exclude some of the sequences and to keep only the most ”sig-

nificant” ones. The final and most appropriate solution is to incorporate some of the

partitional clustering algorithms. The partitional clustering divides a larger dataset into

smaller partitions represented by one of the sequences. The sequences which are rep-

resentation of the partition (cluster) can be kept as the most ”significant”, and these

sequences form a reduced database. There are many different algorithms to do cluster-

ing and each of them with different features. One of possible algorithms is UCLUST,

see section 2.1.2. Since the features of UCLUST are suitable for our needs, it is a part

of our solution.

The limitation of the non-commercial UCLUST version is that a maximum of 4Gb

RAM can be used. Dataset of size 1Gb can use 4Gb RAM. Thus a bigger dataset is

first divided into partitions of the maximum 50000 sequences, so UCLUST can be run

on each partition. The set of 50000 sequences can also use more than 4Gb RAM, to

prevent that, we added an extra constraint: if the size of a dataset reach the maximum of

1Gb, we divide the set into even smaller partitions. Since the clustering of one partition

does not depend on the other partitions, the process of clustering the data in each

partition can be run in parallel. At the end, the results of each partition are concatenated

together. Since we concatenate centroids derived from different partitions, there is

possibility that following criterion can be compromised: all centroids have similarity

less than T to each other. To preserve that criterion, partitions are made in such a way

to decrease the probability that two centroids coming from different partitions have a

similarity more than T to each other. We can make this by dividing the database into

partitions according to the length of the sequences. The sequences from the database

are sorted by the length and then divided into partitions.

A size of the clusters mainly depends on the threshold (T). Whether an identity

between a next sequence and existing centroids is smaller or bigger than the threshold,

the sequence is classified as a new centroid or as a part of the cluster. For the smaller

threshold, clusters are usually bigger, but the accuracy of such a cluster is questionable.

During a clustering process, UCLUST does not update centroids. Once a sequence

15

Table 3.2: Centroids

Total number Real centroids Percentage

48023 47375 98.65%

32082 31193 97.22%

38112 37391 98.10%

35937 35836 99.71%

Figure 3.5: Centroids file

becomes the centroid of a cluster, it stays as the centroid (a representation of the clus-

ter) even though it does not need to be a real centroid of the cluster. Areal centroid is

a sequence from a cluster which has a minimum sum of distances to other sequences.

The question was should we calculate a real centroid of the cluster and keep it as a

representation of the cluster or are UCLUST centroids sufficient enough? We ran a

test on different datasets and the results are shown in table 3.2. Since the percentage

of the real centroids among UCLUST centroids is large enough, we decided to keep

UCLUST centroids as a representation of the clusters.

An output of the clustering using UCLUST consists of two files: the file which

contains centroids from clustering in FASTA format and the file with clusters. Clusters

in the file are separated with a keyword: ”Cluster”. A name of the cluster is a name of

the centroid and comes after the keyword. Each cluster is following with an empty row.

Sequences which belong to the cluster are written in FASTA format after the name. An

example of the output is shown in figures 3.5 and 3.6. Six sequences are clustered into

two clusters, centroids re shown in the figure 3.5, while associated clusters are in figure

3.6.

Having centroids in a separate file makes the process of searching for a new se-

quence faster. When a new sequence has to be identified, the procedure can be stated

as follows:

1. Make an alignment of the sequence to the centroids

16

Figure 3.6: Clusters file

2. Get a sequence which gives highest alignment score

3. Get a cluster represented by the sequence from the previous step

4. Make an alignment of the sequence to the cluster

The first step is to make an alignmet of the sequence to the centroids. Since the

alignment of the sequence to the two different centroids is independent, to make pro-

cess faster, we can run it in parallel. Due to the parallel running, we add a preprocessing

step which divides centroids into partitons. Afterwards, all other steps are run on the

each partition.

3.4. Final design

We were tested our approches according to our two requirements:

1. To be able to create a reduced dataset from a big dataset (more than 100000

sequences)

2. To make faster an identification of a new sequence

17

It has been shown that Clustering using UCLUST fits the best to our requirements,

while the Hierarchical clustering using multiple alignement fails on the first require-

ment, the Single-link clustering fails on the second one. According to that, our final

solution is implementation of the Clustering using UCLUST.

The implementation can be found on the link https://github.com/Dorija/clust. The

implementation is made using C++, standard C++11. It is created for Linux operating

system. We created two separed programs, the program for creating a reduced dataset

called Reducer and the program to identified a new sequence called Searcher. The

Reducer and the Searcher follow the procedures described in the section 3.3. Reducer

options can be found in table 3.3, while in table 3.4 are options for Searcher.

Requirements for both programs:

– C++ compiler which supports standard C++11/C++0x

– Usearch package (http://www.drive5.com/usearch/download.html)

– OpenMP (supported by the GNU Compiler Collection) - optional

To run the Reducer properly, Usearch has to be in you $PATH. The program can

be run successfully even without OpenMP support. Without the support, all the work

which can be run in parallel, will be executed in serial.

The number of threads used for parallel sections are correlated with the character-

istics of the user’s computer.

Table 3.3: Options Reducer

Option Short form Description Mandatory

–in -i Input dataset - FASTA format 1

–out -o Output file for reduced dataset (centroids) -

FASTA format. Default is "centroids.txt"

0

–clusters -c Output file for clusters. Default is "clusters.txt" 0

–identity -p Identity threshold, default: 0.5 0

To use the Reducer, first create a binary executable file. The file can be created

typing a command:

g++ -std=c++0x -fopenmp src/reducer.cpp -o Reducer

To create a binary executable file for the Searcher, type a command:

g++ -std=c++0x src/searcher.cpp -o Searcher

18

Table 3.4: Options Searcher

Option Short form Description Mandatory

–in -i Input sequences (one or more) which has to be

found - FASTA format

1

–dataset -d Input file which contains reduced dataset (cen-

troids) - FASTA format

1

–clusters -c Input file which contrains clusters 1

–identity -p Identity threshold for searching, default: 0.5 0

The output of the Reducer are two files, the file with centroids (reduced database)

and the file with clusters. The Searcher prints the output on the standard output. First

it prints the name of the sequence which we want to identify followed by colon (:) and

the list of all found sequences.

3.4.1. Example

Here is a example of running the Reducer and the Searcher. Please go through an

example before running on you own data.

Fist run the Reducer on test.fasta:

./Reducer --in data/test.fasta --out centroids.fasta

--clusters cluster.txt --identity 0.9

To identify a new sequence (seq.fasta):

./Searcher --in data/seq.fasta --dataset centroids.fasta

--clusters cluster.txt --identity 0.9

The output should be as follows:

test1:

seq32

test2:

seq24

19

4. Results

Our approaches were tested on a set of bacterial coding sequences (CDS). Since the

tests were made on different sizes of datasets,the names and the sizes of the datasets

can be found in table 4.1. A unit for the size of the dataset is a number of sequences.

The Small, Medium and Big datasets are obtained from Bact_cds dataset, by randomly

choosing a specific number of sequences. The dataset Bact_cds is generated using bac-

terial genomes obtained from NCBI. Current number of available bacterial genomes

on NCBI is 6385. Genes are extracted from bacterial genomes, and they are eventu-

ally used to generate our Bact_cds dataset. A length distibution of the sequences from

Bact_cds dataset is shown in figure 4.1. By the length, we consider a number of nu-

cleotides. On the horizontal axis are shown lengths of sequences, and on the vertical

axis frequency. The longest sequence has 110418 nucleotides, while the shortest one

has 18. Since the most significant concentration of the sequence length is in the first

few bins, it is interesting to see a distribution inside those bins. The distribution is

shown in figure 4.2.

To test our method, as a measure we use accuracy. Accuracy is defined as a per-

centage of the correct identifications from the reduced database. The reduced database

is created, and afterwards we search through our reduced database for the sequences

from the original database. If the sequence which we are using for searching is the

same as the one found, the identification is correct.

Table 4.1: Dataset

Dataset Size

Bact_cds 8726645

Small 150

Medium 1500

Big 50000

The results for the UCLUST clustering are shown in tables 4.2 and 4.3. Since there

20

Figure 4.1: Distribution of the sequence length

is no limitation on the size of the database, the method is run using all of our datasets

(Small, Medium, Big, and the original one Bact_cds). The results are shown for the

different datasets and the parameter T, identity threshold.

In 4.2 are shown accuracy and average time to identify one sequence. To measure

accuracy, we ran the Searcher with the sequences from a specific database, dataset and

clusters, which were given to Searcher, were the ones created with the Reducer for the

same database. For the Small and Medium dataset, we have used all of the sequences

from the dataset for identification with the Searcher. Since running the Searcher for

the Big and Bact_cds is more exhaustive, and datasets consist of much more sequences

than the first two datasets, for the purpose of testing we have to randomly choose some

smaller set of the sequences. We pick up 1000 sequences from the Big and Bact_cds.

Time is representing average time for an identification of one sequence. The Searcher

has to do a preprocessing of a sequence, before the sequence is ready to be identify.

Time for an identification starts running only when the sequence is ready.

The sizes of the data sets are shown in table 4.3. Column Percentage stands as

a percentage of a reduction. A reduction is calculated as a number of the sequences

from the original dataset, which are excluded from the reduced dataset. According to

21

Figure 4.2: Distribution of the sequence length

the results, for a smaller threshold percentage of a reduction is larger.

The difference in the threshold value are reflected not only on the percentage of a

reduction, but also on the accuracy of identification. In general, we can conclude that

higher threshold results in higher accuracy.

Even though the percentage of a reduction is larger for threshold value 0.5 than

for values 0.7 and 0.9, we can observe that average time on datasets the Small and

Medium is smaller for values 0.7 and 0.9. The reason for the behavior is that the size

of the datasets is not large enough to to achieve full potential of the clustering. The

smaller datasets, even though they can be reduced, do not have ability to overcome

the additional computational cost of managing the clusters. A real potential of the

clustering is achieved if the computational cost of managing the clusters is less than

the computational cost of going through the sequences which would be excluded from

the Reduced dataset.

22

Table 4.2: Accuracy and time

Dataset Threshold Accuracy Time(s)

Small 0.9 100% 0.00040

Small 0.7 100% 0.00047

Small 0.5 100% 0.00120

Medium 0.9 100% 0.00142

Medium 0.7 99.86% 0.00148

Medium 0.5 96.66% 0.00213

Big 0.9 99.90% 0.03985

Big 0.7 99.90% 0.04039

Big 0.5 93.50% 0.00310

Bact_cds 0.9 95.60% 5.38980

Bact_cds 0.7 81.50% 16.08140

Bact_cds 0.5 70.81% 9.06102

Table 4.3: Percentage of a reduction

Dataset Threshold Original size Reduced size Percentage

Small 0.9 150 150 0%

Small 0.7 150 150 0%

Small 0.5 150 24 84%

Medium 0.9 1500 1488 0.80%

Medium 0.7 1500 1478 1.47%

Medium 0.5 1500 106 92.93%

Big 0.9 50000 48907 2.19%

Big 0.7 50000 44743 10.57%

Big 0.5 50000 26093 47.82%

Bact_cds 0.9 8726645 5284712 40%

Bact_cds 0.7 8726645 4114545 52.25%

Bact_cds 0.5 8726645 1758319 79.86%

23

5. Conclusion

For the purpose of a faster identifications of sequences, the current database should be

modeled in a different way. One of the possible ways is to grouping a sequences which

are similar to each other, and represent them with one of the significant sequence. The

significant sequences are part of the reduced database, while all the other sequences

are hidden behind.

We proposed three different approaches for creating reduced database. The single-

link clustering was the first try. It usually produced very unbalanced dendrograms.

Since unbalanced dendrograms can not decrease searching time, we found the method

inappropriate and continued with different approach. The hierarchical clustering with

multiple alignment has showed up as a very suitable considering the accuracy, but the

problem was a spreed when searching for a new sequence. For the hierarchical clus-

tering method we had choose a HMM profiles to represent each cluster. One of the

limitation of the method was limitation of the current multiple alignment softwares.

We were aware that accuracy of multiple alignments software for a huge dataset can

be questionable, but we wanted to try our method for that kind of dataset. The time

was a problem, hence we moved to the third approach. The third and the last approach

involved partitional clustering. The idea behind was to group the sequences into parti-

tion where each partition consists of the sequences with similarity between them more

than some given number. We ended up with each partition represented with one se-

quence which is called centroid and all the other sequences in the partition has identity

between centroid larger than some given number.

Since the third approaches has been shown as the best, our final design contains

implementation of it. Two programs has been produced, the Reducer and the Searcher.

The Reducer creates a reduced database, while the Serchers search through the reduced

database to find a new sequence. To create a reduced database, different threshold

value for identity can be given. According to our results, the threshold value should be

correleted with the initial size of the database and the needs of the user. Accuracy of

the Searcher is higher, if the threshold value is higher. The cost of accuracy is usually

24

time, even though we have shown that it is not the case for initialy smaller dataset.

There is always a better way, hence for the future work we would like to try again

with a hierachical clustering and multiple alignment, and to try with different way of

representing a clusters.

25

BIBLIOGRAPHY

Löytynoja A. and Goldman N. An algorithm for progressive multiple alignment of

sequences with insertions. PNAS, 102, 205.

Richard C. Duber Anil K. Jain. Algorithms for Clustering Data. Prentice-Hall, Inc.

Upper Saddle River, NJ, USA c©1988, 1988.

BLAST R© Command Line Applications User Manual. Bethesda (MD): National Cen-

ter for Biotechnology Information (US), 2008. URL http://www.ncbi.nlm.

nih.gov/books/NBK279690/.

Sean R. Eddy. Profile hidden markov models. Bioinformatics, 14, 1998.

Sean R. Eddy and Travis J. Wheeler. HMMER User’s Guide, 2015. URL

ftp://selab.janelia.org/pub/software/hmmer3/3.1b2/

Userguide.pdf.

EMBOSS Smith-Waterman, 2015. URL http://www.ebi.ac.uk/Tools/

psa/emboss_water/help/index-nucleotide.html.

Sievers F., Wilm A., Dineen DG., Gibson TJ., Karplus K., Li W., Lopez R., McWilliam

H., Remmert M., Söding J., Thompson JD., and Higgins DG. Fast, scalable gen-

eration of high-quality protein multiple sequence alignments using clustal omega.

Molecular Systems Biology, 7, 2011.

Profile HMM Analysis. Profile hidden markov models analysis, 2015. URL http:

//www.biology.wustl.edu/gcg/hmmanalysis.html.

Edgar RC. Search and clustering orders of magnitude faster than blast. Bioinformatics,

26, 2010.

Simossis V., Kleinjung J., and Heringa J. An overview of multiple sequence alignment.

Current Protocols in Bioinformatics, 3, 2003.

26

Reducirana baza gena za precizno odred̄ivanje vrsta

Sažetak

U svrhu brze identifikacije vrsta, trenutne baze podataka bi se trebale remodelirati.

Trenutne baze sadrže sekvence koje su slične jedne drugima, što dovodi do redun-

dacije prilikom odred̄ivanja vrsta te usporava cijeli proces. Prijedlog je da se baze

podataka konvertiraju u takozvane Reducirane baze podataka. Reducirana baza po-

dataka sadržavala bi informacije o značajnim sekvencama, a sve ostale sekvence bile

bi skrivene iza za njih značajnih sekvenci. U ovom radu predložena su tri različita

pristupa. Dva bazirana na hijerarhijskom grupiranju i jedan na particijskom grupi-

ranju. Konačaj dizajn rada sadrži implementaciju pristupa baziranog na particijskom

grupiranju, budući da se taj pristup pokazao kao najbolji.

Ključne riječi: Grupiranje, Redukcija genoma, Identifikacija

A reduced gene database for precision species detection

Abstract

For the purpose of a faster identification of sequences, the current database should

be modeled in a different way. The current databases should be converted to the re-

duced database. The reduced database is modeled in a way that at first it gives us

information only about significant sequences, and all the other sequences are hidden

behind their representative. We proposed three different approaches for creating re-

duced database. Two of them incorporates hierachical clustering, while the third one is

based on partitional clustering. Since the approach with partitional clustering has been

shown as the best, our final design contains implementation of it. Two programs has

been created, the Reducer and the Searcher. The Reducer creates a reduced database,

while the Serchers search through the reduced database to find a new sequence.

Keywords: Clustering, identification, Reduced database

